代码随想录算法训练营第二十八天丨 回溯算法part04

2023-10-20 16:28

本文主要是介绍代码随想录算法训练营第二十八天丨 回溯算法part04,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列

思路

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

在90.子集II (opens new window)中是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

代码如下:

List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
void backTracking(int[] nums,int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,所以和可以不加终止条件,startIndex每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() >= 2){ // 注意这里不要加return,因为要取树上的所有节点res.add(new ArrayList<>(path));
}
  • 单层搜索逻辑

491. 递增子序列1

 在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

HashSet<Integer> hs = new HashSet<>();// 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.length; i++) {if ((!path.isEmpty() && path.getLast() > nums[i])||hs.contains(nums[i])){continue;}hs.add(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.add(nums[i]);backTracking(nums,i+1);path.removeLast();
}

这也是需要注意的点,HashSet<Integer> hs = new HashSet<>(); 是记录本层元素是否重复使用,新的一层 hs 都会重新定义(清空),所以要知道uset只负责本层!

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums,0);return res;}void backTracking(int[] nums,int startIndex){if (path.size() >= 2){ // 注意这里不要加return,因为要取树上的所有节点res.add(new ArrayList<>(path));}HashSet<Integer> hs = new HashSet<>();// 使用set来对本层元素进行去重for (int i = startIndex; i < nums.length; i++) {if ((!path.isEmpty() && path.getLast() > nums[i])||hs.contains(nums[i])){continue;}hs.add(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.add(nums[i]);backTracking(nums,i+1);path.removeLast();}}
}

46.全排列

思路

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean[] used;
void backtracking(int[] nums)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.length){res.add(new ArrayList<>(path));return;
}
  • 单层搜索的逻辑

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.length; i++) {if (used[i]){// path里已经收录的元素,直接跳过continue;}path.add(nums[i]);used[i] = true;backtracking(nums);used[i] = false;path.removeLast();
}

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();boolean[] used;public List<List<Integer>> permute(int[] nums) {used = new boolean[nums.length];Arrays.fill(used,false);backtracking(nums);return res;}void backtracking(int[] nums){if (path.size() == nums.length){res.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (used[i]){continue;}path.add(nums[i]);used[i] = true;backtracking(nums);used[i] = false;path.removeLast();}}
}

47.全排列 II

思路

这道题目和上一题 全排列 的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

在40.组合总和II (opens new window)、90.子集II (opens new window)分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {used = new boolean[nums.length];Arrays.fill(used,false);Arrays.sort(nums);backTracking(nums);return res;}void backTracking(int[] nums){if (path.size() == nums.length){res.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if ((i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false)|| used[i]) {continue;}//如果同⼀树⽀nums[i]没使⽤过开始处理path.add(nums[i]);used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用backTracking(nums);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;path.removeLast();//回溯}}
}

以上为我做题时候的相关思路,自己的语言组织能力较弱,很多都是直接抄卡哥的,有错误望指正。

这篇关于代码随想录算法训练营第二十八天丨 回溯算法part04的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248267

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时