正余弦定理解三角形的实际应用

2023-10-20 11:59

本文主要是介绍正余弦定理解三角形的实际应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导言:

1、上节课:用正余弦定理解三角形,复习回顾

2、本节课和上节课的关系:上节课用正余弦定理解三角形,是针对三角形的数学模型来求解;而本节课需要将实际问题先图形化,转化为针对三角形的数学模型来处理的问题,如果这个环节做得好,那么到此问题就完全变成了上一节的问题。

静雅凤中$\;\cdot\;$正余弦定理的实际应用 考点:测量不可到达的高度问题,求三角形的边 Cnblogs_LT02.bmp要测量电视塔$AB$的高度,在$C$点测得塔顶$A$的仰角是$45°$,在$D$点测得塔顶$A$的仰角是$30°$,并测得水平面上的$∠BCD=120°$,$CD=40 m$,则电视塔的高度为__________m. 992978-20180108154013332-1486882320.png

分析:设电视塔$AB$高为$x\; m$, 则在$Rt\Delta ABC$中,由$\angle ACB=45°$得$BC=x$. 在$Rt\Delta ADB$中,由$\angle ADB=30°$,得$BD=\sqrt{3}x$. 在$\Delta BDC$中,由余弦定理,得 $BD^2=BC^2+CD^2-2BC\cdot CD\cdot cos120°$, 即$(\sqrt{3}x)^2=x^2+40^2-2\cdot x\cdot 40\cdot cos120°$, 解得$x=40$,所以电视塔高为$40 m$.

反思总结:①解三角形问题时,常常需要将立体问题平面化; ②当已知条件不在一个三角形中时,我们常常将其转化到一个三角形中,再求解即可。 静雅凤中$\;\cdot\;$正余弦定理的实际应用 考点:测量不可到达的距离问题,求三角形的边 Cnblogs_LT02.bmp如图$A、B$两点在河的两侧,且$A、B$两点均不可到达,如果要测量$AB$的距离,测量者在河岸边选定了两点$C、D$,并测得$CD=\cfrac{\sqrt{3}}{2}km$,$\angle ACB=\alpha=45^{\circ}$,$\angle ACD=\beta=60^{\circ}$,$\angle CDB=\gamma=30^{\circ}$,$\angle ADB=\delta=30^{\circ}$,求$A、B$两点间的距离。 992978-20180108180233410-1850891563.png

分析:在$\Delta ACD$中,由$\angle ADC=\delta+\gamma=60^{\circ}$,$\angle ACD=60^{\circ}$,$CD=\cfrac{\sqrt{3}}{2}km$, 可得边$AC=CD=\cfrac{\sqrt{3}}{2}km$; 在$\Delta BCD$中,由$\angle BDC=30^{\circ}$,$\angle BCD=105^{\circ}$,$CD=\cfrac{\sqrt{3}}{2}km$, 故由正弦定理,可得$BC=\cfrac{DC}{sin\angle DBC}\cdot sin\angle BDC=\cfrac{\sqrt{6}}{4}$; 在$\Delta ABC$中,由$\angle ACB=45^{\circ}$,$AC=\cfrac{\sqrt{3}}{2}km$,$BC=\cfrac{\sqrt{6}}{4}$, 由余弦定理可得,$AB^2=BC^2+AC^2-2BC\cdot AC\cdot cos45°$, 解得$AB=\cfrac{\sqrt{6}}{4}km$

反思总结:1、怎么分析?由果溯因,题目要求解$AB$的长度,需要将其放置到一个三角形中, 图中能包纳$AB$在内的三角形有三个,分别是$\Delta ABC$和$\Delta ABD$和$\Delta AOB$, 首先能排除的是不选$\Delta AOB$,原因是已知条件都用不上。 接下来,选择的这两个三角形,从已知数据的角度看是对称的,所以随便选一个,比如$\Delta ABC$。 在此三角形中,$\angle ACB=45^{\circ}$能用上,自然还得知道边$AC$和$BC$, 要求解边$AC$,也得选个三角形,比如选$\Delta ACD$,用正弦定理求解$AC$即可; 要求解边$BC$,也得选个三角形,比如选$\Delta BCD$,用余弦定理求解$BC$即可; 到此,回到$\Delta ABC$中,用余弦定理就可以搞定问题了。 2、当已知条件转化到一个三角形中时,问题就变得迎刃而解了。 静雅凤中$\;\cdot\;$正余弦定理的实际应用 题源:2017淄博模拟;考点:测量角度问题,求三角形的角 Cnblogs_LT02.bmp如图,在海岸$A$处,发现北偏东$45^{\circ}$方向距离$A$处$(\sqrt{3}-1)$海里的$B$处有一艘走私船,在$A$处北偏西$75^{\circ}$方向,距离$A$处$2$海里的$C$处的缉私船奉命以$10\sqrt{3}$海里/时的速度追截走私船,此时走私船正以$10$海里/时的速度从$B$处向北偏东$30^{\circ}$方向逃窜,问缉私船沿什么方向能最快追上走私船,并求所需时间。(注:$\sqrt{6}\approx 2.449$) 992978-20180109155951457-266020522.png

设缉私船沿北偏东$\theta$的$CD$方向能最快追上,所需时间为$t$小时,并设$\angle DCB=\alpha$, 在$\Delta ABC$中,$AB=\sqrt{3}-1$,$AC=2$,$\angle BAC=120^{\circ}$, 则由余弦定理可知,$BC^2=AC^2+AB^2-2\cdot AC\cdot AB\cdot cos120^{\circ}=\cdots=6$,则$BC=\sqrt{6}$; 在$\Delta ABC$中,由正弦定理可知,$\cfrac{AC}{sin\angle CBA}=\cfrac{BC}{sin120^{\circ}}$,代值整理得到 $sin\angle CBA=\cfrac{\sqrt{2}}{2}$,则可知$\angle CBA=\cfrac{\pi}{4}$,即$B、C$两点在正东正西方向上。 在$\Delta BCD$中,$BC=\sqrt{6}$,$BD=10t$,$CD=10\sqrt{3}t$,$\angle CBD=120^{\circ}$, 则由余弦定理可知,$CD^2=BC^2+BD^2-2\cdot BC\cdot BD\cdot cos120^{\circ}$, 化简整理得,$200t^2-10\sqrt{6}t-6=0$,即$(20t+\sqrt{6})(10t-\sqrt{6})=0$, 解得$t=\cfrac{\sqrt{6}}{10}\approx 0.245$小时$=14.7$分钟。 此时,由正弦定理可得,$\cfrac{BD}{sin\angle DCB}=\cfrac{CD}{sin120^{\circ}}$,即$\cfrac{10t}{sin\alpha}=\cfrac{10\sqrt{3}t}{sin120^{\circ}}$, 代值整理得到,$sin\alpha=\cdots=\cfrac{1}{2}$,故$\alpha=30^{\circ}$。 即沿北偏东$60^{\circ}$或东偏北$30^{\circ}$方向能追上,最快用时约$14.7$分钟。

反思总结:①本题目的难点之一,就是根据题意做出图形,作图时需要理解题中的各种角的含义, ②且在$A、B、C$处需要建立方位。同时还存在做出的是俯视图还是斜二测图形。 ③题目一开始我们并不知道$BC$两点在正东正西方向上,所以直接设沿着东偏北多少是错误的。 ④在$\Delta BCD$中使用正弦定理求$sin\angle DCB$时,代入边长时要么都用边长,要么都使用速度,以减少运算错误;如果利用余弦定理计算$cos\angle DCB$会非常麻烦。

001
如图,一条河的两岸平行,河的宽度\(d=0.6 km\),一艘客船从码头A出发匀速驶往河对岸的码头B。已知\(AB=1km\),水的流速为\(2 km/h\),若客船从码头A驶到码头B所用的最短时间为\(6 min(0.1h)\),则客船在静水中的速度为 【 】
A.\(8 km/h\) \(\hspace{2cm}\) B.\(6\sqrt{2} km/h\) \(\hspace{2cm}\) C.\(2\sqrt{34} km/h\) \(\hspace{2cm}\) D.\(10 km/h\)

992978-20180112154042926-214262796.png

分析:此题涉及到运动的合成,如右图所示,要想使得船的最终实际航行路线是AB,那么船在静水中时的航线应该是AC,水流的方向是AD,这样在两个向量AC、AD的共同作用下,船的最终实际航行路线才可能是AB,这样就形成了\(\Delta ABC\)\(\Delta ABD\)

设客船在静水中的速度为\(v km/h\),那么\(AC=BD=0.1v\)\(AB=1\)\(AD=0.1\times 2=0.2\)

\(\Delta BAE\)中,\(sin\theta=\cfrac{0.6}{1}=\cfrac{3}{5}\),则\(cos\theta=\cfrac{4}{5}\),即\(cos\angle BAD=cos\theta=\cfrac{4}{5}\)

则在\(\Delta ABD\)中,\(BD^2=AB^2+AD^2-2AB\cdot AD\cdot cos\angle BAD\)

\((0.1v)^2=1^2+(0.2)^2-2\times 1\times 0.2\times \cfrac{4}{5}\),解得\(v=6\sqrt{2}\),故选B。

002 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m 到达点B,在B点测得水柱顶端的仰角为 30°,则水柱的高度是【】

A.\(50m\) \(\hspace{2cm}\) B.\(100m\) \(\hspace{2cm}\) C.\(120m\) \(\hspace{2cm}\) D.\(150m\)

992978-20180112154931504-1208429744.png

分析:本题目的难点是作出适合题意的立体图形,必要的时候可以使用斜二次画法理解题意。

如右图所示,水柱高为CD,其垂直于下底面ABC,

\(\angle DAC=45^{\circ}\)\(\angle BAC=60^{\circ}\)\(\angle DBC=30^{\circ}\)

设水柱的高度为\(h\),则在\(\Delta ABC\)中,\(BC=\sqrt{3}h\)\(AC=h\)\(AB=100\)\(\angle BAC=60^{\circ}\)

由余弦定理可得\(BC^2=AB^2+AC^2-2AB\cdot AC\cdot cos\angle BAC\)

\(3h^2=h^2+100^2-2\times 100\times h\times \cfrac{1}{2}\)

化简整理得到,\(h^2+50h-5000=0\)

解得\(h=-100(舍去)\)\(h=50\)。故选A。

【例1】据气象部门预报,在距离某码头正西方向\(400km\)处的热带风暴中心正以\(20km/h\)的速度向东北方向移动,距离风暴中心\(300km\)以内的地区为危险区,该码头处于危险区内的时间是_____小时。

https://www.desmos.com/calculator/jnpmgjgnni

法1:解三角形法

设风暴移动的时间为\(t\)小时,由题可知,\(AB^2=400^2+400t^2-2\times20t\times400\cfrac{\sqrt{2}}{2}\leq 300^2\)

解得$10\sqrt{2}-5\leq t \leq 10\sqrt{2}+5 $

所以码头处于危险区的时间为\(10\sqrt{2}+5-(10\sqrt{2}-5)=10\).

【难点列举】

1、转化为解三角形模型

2、\(AB^2 \leq 300^2\)的理解

3、解不等式,十字相乘法变换为公式法

4、对\(t=10\sqrt{2}\pm 5\)的理解

法2:平面几何法

分析:利用圆中的\(Rt\Delta\)可知风暴作用于码头的距离是\(200km\),故时间为\(\cfrac{200}{20}=10\)小时。

【例2】立体图形中的方位角的问题

http://bmob-cdn-5522.b0.upaiyun.com/2017/04/10/95c02ba5408e0e858033c6be11b63609.html?s=share

转载于:https://www.cnblogs.com/wanghai0666/p/8242987.html

这篇关于正余弦定理解三角形的实际应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246961

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,