liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析

本文主要是介绍liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

韦东山老师教学视频

0.环境搭建过程中遇到的问题

1.解决THE FOLLOWING PACKAGES HAVE UNMET DEPENDENCIES问题!!!

终于搭建完成开发环境:
在这里插入图片描述
2.执行编译指令报错
在这里插入图片描述
报错了
Ubuntu下手动安装clang:

apt-get install clang

进入《Configuring_ubuntu.sh》文件搜索clang,发现如下代码,这是该脚本不支持ubuntu16的意思么?
似乎是…
经过实测需要使用ubuntu18.04
在这里插入图片描述

1.启动流程分析

reset_vector_up.s
1.关中断;设置CPU为SVC32模式;

	/** disable interrupts (FIQ and IRQ), also set the cpu to SVC32 mode,* except if in HYP mode already*/mrs	r0, cpsrand	r1, r0, #0x1f		@ mask mode bitsteq	r1, #0x1a		@ test for HYP modebicne	r0, r0, #0x1f		@ clear all mode bitsorrne	r0, r0, #0x13		@ set SVC modeorr	r0, r0, #0xc0		@ disable FIQ and IRQmsr	cpsr,r0

2.禁止I-cache;

	/** If I-cache is enabled invalidate it*/mcr	p15, 0, r0, c7, c5, 0	@ invalidate icachemcr     p15, 0, r0, c7, c10, 4	@ DSBmcr     p15, 0, r0, c7, c5, 4	@ ISB

3.重定位(把程序复制到运行地址);

/* r11: delta of physical address and virtual address */
adr     r11, pa_va_offset //把变量pa_va_offset的地址给r11
ldr     r0, [r11]		  //把变量r11存储的变量作为地址,指向的数据给r0
sub     r11, r11, r0      //计算地址偏差/* if we need to relocate to proper location or not */
adr     r4, __exception_handlers            /* r4: base of load address *//*__exception_handlers就是异常向量表的首地址,也就是整个程序运行的首地址*/
ldr     r5, =SYS_MEM_BASE                   /* r5: base of physical address*//* 处理器内部DDR的物理空间起始地址 */
subs    r12, r4, r5                         /* r12: delta of load address and physical address */
beq     reloc_img_to_bottom_done            /* if we load image at the bottom of physical address *//* 若当前的运行地址和物理地址一致,则跳转到下面的函数,无需进行进行搬运 ,即重定位*/

3.1.搬运分支

    /* we need to relocate image at the bottom of physical address */ldr     r7, =__exception_handlers           /* r7: base of linked address (or vm address) *//* r7=实际程序代码段的首地址 */ldr     r6, =__bss_start                    /* r6: end of linked address (or vm address) *//* r6=实际程序代码段的末地址 */sub     r6, r7                              /* r6: delta of linked address (or vm address) *//* r6=实际程序代码段的长度 */add     r6, r4                              /* r6: end of load address *//* r6=实际程序代码段的末地址 *//* 循环搬运 */
reloc_img_to_bottom_loop:ldr     r7, [r4], #4str     r7, [r5], #4cmp     r4, r6bne     reloc_img_to_bottom_loopsub     pc, r12nopsub     r11, r11, r12                       /* r11: eventual address offset */

3.2.无需搬运分支

    ldr     r4, =g_firstPageTable               /* r4: physical address of translation table and clear it *//* r4=页表的物理地址起始地址 */add     r4, r4, r11bl      page_table_clear					/* 页表空间清零 */

4.LINE175:设置页表(虚拟地址转换为物理地址),代码如下

    PAGE_TABLE_SET SYS_MEM_BASE, UNCACHED_VMM_BASE, UNCACHED_VMM_SIZE, MMU_INITIAL_MAP_STRONGLY_ORDERED
#ifdef LOSCFG_PLATFORM_IMX6ULLPAGE_TABLE_SET DDR_RAMFS_ADDR, DDR_RAMFS_VBASE, DDR_RAMFS_SIZE, MMU_INITIAL_MAP_DEVICEPAGE_TABLE_SET LCD_FB_BASE, LCD_FB_VBASE, LCD_FB_SIZE, MMU_INITIAL_MAP_DEVICE
#endifPAGE_TABLE_SET SYS_MEM_BASE, KERNEL_VMM_BASE, KERNEL_VMM_SIZE, MMU_DESCRIPTOR_KERNEL_L1_PTE_FLAGSPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_DEVICE_BASE, PERIPH_DEVICE_SIZE, MMU_INITIAL_MAP_DEVICEPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_CACHED_BASE, PERIPH_CACHED_SIZE, MMU_DESCRIPTOR_KERNEL_L1_PTE_FLAGSPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_UNCACHED_BASE, PERIPH_UNCACHED_SIZE, MMU_INITIAL_MAP_STRONGLY_ORDERED

其中,PAGE_TABLE_SET 为宏定义,其定义在reset_vector_up.s为:

/* param0 is physical address, 物理地址param1 virtual address, 虚拟地址param2 is sizes, 大小param3 is flag 标志*/
.macro PAGE_TABLE_SET param0, param1, param2, param3ldr     r6, =\param0ldr     r7, =\param1ldr     r8, =\param2ldr     r10, =\param3bl      page_table_build
.endm

在MMU启动之前,CPU发出的地址可以直接到达设备,之后则需要经过MMU再发给设备(关于页表和MMU的具体值是参见《嵌入式Linux应用开发完全手册_韦东山全系列视频文档全集V2.4》P639)

bl      mmu_setup                           /* set up the mmu */

5.多核心CPU的处理方式

    /* get cpuid and keep it in r11 */mrc     p15, 0, r11, c0, c0, 5and     r11, r11, #MPIDR_CPUID_MASK/* 判断当前的core是否为核0,若为核0则初始化堆栈,若不是则跳过 */cmp     r11, #0bne     excstatck_loop_doneexcstatck_loop:/* clear out the interrupt and exception stack and set magic num to check the overflow */ldr     r0, =__undef_stackldr     r1, =__exc_stack_topbl      stack_initSTACK_MAGIC_SET __undef_stack, #OS_EXC_UNDEF_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __abt_stack, #OS_EXC_ABT_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __irq_stack, #OS_EXC_IRQ_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __fiq_stack, #OS_EXC_FIQ_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __svc_stack, #OS_EXC_SVC_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __exc_stack, #OS_EXC_STACK_SIZE, OS_STACK_MAGIC_WORDexcstatck_loop_done:

6.设置堆栈

    /* set svc stack, every cpu has OS_EXC_SVC_STACK_SIZE stack */ldr    r0, =__svc_stack_topmov    r2, #OS_EXC_SVC_STACK_SIZEmul    r2, r2, r11sub    r0, r0, r2mov    sp, r0

7.设置FPU+NEON

    /* enable fpu+neon */MRC    p15, 0, r0, c1, c1, 2ORR    r0, r0, #0xC00BIC    r0, r0, #0xC000MCR    p15, 0, r0, c1, c1, 2LDR    r0, =(0xF << 20)MCR    p15, 0, r0, c1, c0, 2MOV    r3, #0x40000000VMSR   FPEXC, r3LDR    r0, =__exception_handlersMCR    p15, 0, r0, c12, c0, 0cmp    r11, #0bne    cpu_start

8.跳转到main函数

bl     main

9.跳转到main函数-路径\kernel\liteos_a\platform

LITE_OS_SEC_TEXT_INIT INT32 main(VOID)
{UINT32 uwRet = LOS_OK;OsSetMainTask();OsCurrTaskSet(OsGetMainTask());/* set smp system counter freq */
#if (LOSCFG_KERNEL_SMP == YES)
#ifndef LOSCFG_TEE_ENABLEHalClockFreqWrite(OS_SYS_CLOCK);
#endif
#endif/* system and chip info */OsSystemInfo();PRINT_RELEASE("\nmain core booting up...\n");uwRet = OsMain();if (uwRet != LOS_OK) {return LOS_NOK;}#if (LOSCFG_KERNEL_SMP == YES)PRINT_RELEASE("releasing %u secondary cores\n", LOSCFG_KERNEL_SMP_CORE_NUM - 1);release_secondary_cores();
#endifCPU_MAP_SET(0, OsHwIDGet());OsStart();while (1) {__asm volatile("wfi");}
}

7.跳转到uwRet = OsMain();函数
(1)串口初始化;uart_init();
(2)操作系统任务初始化;ret = OsTaskInit();
(3)操作系统内存初始化;ret = OsSysMemInit();

这篇关于liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245308

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组