liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析

本文主要是介绍liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

韦东山老师教学视频

0.环境搭建过程中遇到的问题

1.解决THE FOLLOWING PACKAGES HAVE UNMET DEPENDENCIES问题!!!

终于搭建完成开发环境:
在这里插入图片描述
2.执行编译指令报错
在这里插入图片描述
报错了
Ubuntu下手动安装clang:

apt-get install clang

进入《Configuring_ubuntu.sh》文件搜索clang,发现如下代码,这是该脚本不支持ubuntu16的意思么?
似乎是…
经过实测需要使用ubuntu18.04
在这里插入图片描述

1.启动流程分析

reset_vector_up.s
1.关中断;设置CPU为SVC32模式;

	/** disable interrupts (FIQ and IRQ), also set the cpu to SVC32 mode,* except if in HYP mode already*/mrs	r0, cpsrand	r1, r0, #0x1f		@ mask mode bitsteq	r1, #0x1a		@ test for HYP modebicne	r0, r0, #0x1f		@ clear all mode bitsorrne	r0, r0, #0x13		@ set SVC modeorr	r0, r0, #0xc0		@ disable FIQ and IRQmsr	cpsr,r0

2.禁止I-cache;

	/** If I-cache is enabled invalidate it*/mcr	p15, 0, r0, c7, c5, 0	@ invalidate icachemcr     p15, 0, r0, c7, c10, 4	@ DSBmcr     p15, 0, r0, c7, c5, 4	@ ISB

3.重定位(把程序复制到运行地址);

/* r11: delta of physical address and virtual address */
adr     r11, pa_va_offset //把变量pa_va_offset的地址给r11
ldr     r0, [r11]		  //把变量r11存储的变量作为地址,指向的数据给r0
sub     r11, r11, r0      //计算地址偏差/* if we need to relocate to proper location or not */
adr     r4, __exception_handlers            /* r4: base of load address *//*__exception_handlers就是异常向量表的首地址,也就是整个程序运行的首地址*/
ldr     r5, =SYS_MEM_BASE                   /* r5: base of physical address*//* 处理器内部DDR的物理空间起始地址 */
subs    r12, r4, r5                         /* r12: delta of load address and physical address */
beq     reloc_img_to_bottom_done            /* if we load image at the bottom of physical address *//* 若当前的运行地址和物理地址一致,则跳转到下面的函数,无需进行进行搬运 ,即重定位*/

3.1.搬运分支

    /* we need to relocate image at the bottom of physical address */ldr     r7, =__exception_handlers           /* r7: base of linked address (or vm address) *//* r7=实际程序代码段的首地址 */ldr     r6, =__bss_start                    /* r6: end of linked address (or vm address) *//* r6=实际程序代码段的末地址 */sub     r6, r7                              /* r6: delta of linked address (or vm address) *//* r6=实际程序代码段的长度 */add     r6, r4                              /* r6: end of load address *//* r6=实际程序代码段的末地址 *//* 循环搬运 */
reloc_img_to_bottom_loop:ldr     r7, [r4], #4str     r7, [r5], #4cmp     r4, r6bne     reloc_img_to_bottom_loopsub     pc, r12nopsub     r11, r11, r12                       /* r11: eventual address offset */

3.2.无需搬运分支

    ldr     r4, =g_firstPageTable               /* r4: physical address of translation table and clear it *//* r4=页表的物理地址起始地址 */add     r4, r4, r11bl      page_table_clear					/* 页表空间清零 */

4.LINE175:设置页表(虚拟地址转换为物理地址),代码如下

    PAGE_TABLE_SET SYS_MEM_BASE, UNCACHED_VMM_BASE, UNCACHED_VMM_SIZE, MMU_INITIAL_MAP_STRONGLY_ORDERED
#ifdef LOSCFG_PLATFORM_IMX6ULLPAGE_TABLE_SET DDR_RAMFS_ADDR, DDR_RAMFS_VBASE, DDR_RAMFS_SIZE, MMU_INITIAL_MAP_DEVICEPAGE_TABLE_SET LCD_FB_BASE, LCD_FB_VBASE, LCD_FB_SIZE, MMU_INITIAL_MAP_DEVICE
#endifPAGE_TABLE_SET SYS_MEM_BASE, KERNEL_VMM_BASE, KERNEL_VMM_SIZE, MMU_DESCRIPTOR_KERNEL_L1_PTE_FLAGSPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_DEVICE_BASE, PERIPH_DEVICE_SIZE, MMU_INITIAL_MAP_DEVICEPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_CACHED_BASE, PERIPH_CACHED_SIZE, MMU_DESCRIPTOR_KERNEL_L1_PTE_FLAGSPAGE_TABLE_SET PERIPH_PMM_BASE, PERIPH_UNCACHED_BASE, PERIPH_UNCACHED_SIZE, MMU_INITIAL_MAP_STRONGLY_ORDERED

其中,PAGE_TABLE_SET 为宏定义,其定义在reset_vector_up.s为:

/* param0 is physical address, 物理地址param1 virtual address, 虚拟地址param2 is sizes, 大小param3 is flag 标志*/
.macro PAGE_TABLE_SET param0, param1, param2, param3ldr     r6, =\param0ldr     r7, =\param1ldr     r8, =\param2ldr     r10, =\param3bl      page_table_build
.endm

在MMU启动之前,CPU发出的地址可以直接到达设备,之后则需要经过MMU再发给设备(关于页表和MMU的具体值是参见《嵌入式Linux应用开发完全手册_韦东山全系列视频文档全集V2.4》P639)

bl      mmu_setup                           /* set up the mmu */

5.多核心CPU的处理方式

    /* get cpuid and keep it in r11 */mrc     p15, 0, r11, c0, c0, 5and     r11, r11, #MPIDR_CPUID_MASK/* 判断当前的core是否为核0,若为核0则初始化堆栈,若不是则跳过 */cmp     r11, #0bne     excstatck_loop_doneexcstatck_loop:/* clear out the interrupt and exception stack and set magic num to check the overflow */ldr     r0, =__undef_stackldr     r1, =__exc_stack_topbl      stack_initSTACK_MAGIC_SET __undef_stack, #OS_EXC_UNDEF_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __abt_stack, #OS_EXC_ABT_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __irq_stack, #OS_EXC_IRQ_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __fiq_stack, #OS_EXC_FIQ_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __svc_stack, #OS_EXC_SVC_STACK_SIZE, OS_STACK_MAGIC_WORDSTACK_MAGIC_SET __exc_stack, #OS_EXC_STACK_SIZE, OS_STACK_MAGIC_WORDexcstatck_loop_done:

6.设置堆栈

    /* set svc stack, every cpu has OS_EXC_SVC_STACK_SIZE stack */ldr    r0, =__svc_stack_topmov    r2, #OS_EXC_SVC_STACK_SIZEmul    r2, r2, r11sub    r0, r0, r2mov    sp, r0

7.设置FPU+NEON

    /* enable fpu+neon */MRC    p15, 0, r0, c1, c1, 2ORR    r0, r0, #0xC00BIC    r0, r0, #0xC000MCR    p15, 0, r0, c1, c1, 2LDR    r0, =(0xF << 20)MCR    p15, 0, r0, c1, c0, 2MOV    r3, #0x40000000VMSR   FPEXC, r3LDR    r0, =__exception_handlersMCR    p15, 0, r0, c12, c0, 0cmp    r11, #0bne    cpu_start

8.跳转到main函数

bl     main

9.跳转到main函数-路径\kernel\liteos_a\platform

LITE_OS_SEC_TEXT_INIT INT32 main(VOID)
{UINT32 uwRet = LOS_OK;OsSetMainTask();OsCurrTaskSet(OsGetMainTask());/* set smp system counter freq */
#if (LOSCFG_KERNEL_SMP == YES)
#ifndef LOSCFG_TEE_ENABLEHalClockFreqWrite(OS_SYS_CLOCK);
#endif
#endif/* system and chip info */OsSystemInfo();PRINT_RELEASE("\nmain core booting up...\n");uwRet = OsMain();if (uwRet != LOS_OK) {return LOS_NOK;}#if (LOSCFG_KERNEL_SMP == YES)PRINT_RELEASE("releasing %u secondary cores\n", LOSCFG_KERNEL_SMP_CORE_NUM - 1);release_secondary_cores();
#endifCPU_MAP_SET(0, OsHwIDGet());OsStart();while (1) {__asm volatile("wfi");}
}

7.跳转到uwRet = OsMain();函数
(1)串口初始化;uart_init();
(2)操作系统任务初始化;ret = OsTaskInit();
(3)操作系统内存初始化;ret = OsSysMemInit();

这篇关于liteOS-A学习笔记-1.环境搭建过程中遇到的问题+启动流程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245308

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs