简单谐振回路

2023-10-20 06:30
文章标签 简单 回路 谐振

本文主要是介绍简单谐振回路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简单谐振回路分析

  • 阻抗分析
类型并联谐振回路串联谐振回路
示意图在这里插入图片描述在这里插入图片描述
阻抗与导纳 对 应 的 复 数 相 位 角 度 范 围 : ( − π 2 , π 2 ) _{对应的复数相位角度范围:(-\frac{\pi}{2}, \frac{\pi}{2}) } (2π,2π) Y ( ω ) = G + 1 j ω L + j ω C Y(\omega)=G+\frac{1}{j\omega L}+j\omega C Y(ω)=G+jωL1+jωC Z ( ω ) = r + j ω L + 1 j ω C Z(\omega)=r+j\omega L+\frac{1}{j\omega C} Z(ω)=r+jωL+jωC1)
谐振角频率 ( 【 阻 抗 / 导 纳 】 虚 部 为 0 ) _{(【阻抗/导纳】虚部为0)} /0 ω o = 1 L C {\omega}_{o}=\frac{1}{\sqrt{LC}} ωo=LC 1 ω o = 1 L C {\omega}_{o}=\frac{1}{\sqrt{LC}} ωo=LC 1
谐振阻抗最大(理想谐振相当于开路)最小(理想谐振相当于短路)
品质因数(表征器件损耗) Q = R / ρ , 其 中 R = 1 / G ; ρ = ω o L 或 ρ = 1 / ω o C Q=R/{\rho},_{其中R=1/G;{\rho}={\omega}_o L或{\rho}=1/{\omega}_o C} Q=R/ρR=1/G;ρ=ωoLρ=1/ωoC Q = ρ / r Q=\rho/r Q=ρ/r

两者在理想情况下的交流等效回路在去掉电源后是一致的

  • 幅频特性 ( 呈 钟 形 ) _{(呈钟形)}
类型并联谐振回路串联谐振回路
通频带 ( Q ↑ ⟷ B W 3 d B ↓ ) _{(Q\uparrow \longleftrightarrow BW_{3dB}\downarrow)} QBW3dB B W 3 d B = f 0 Q BW_{3dB}=\frac{f_0}{Q} BW3dB=Qf0 B W 3 d B = f 0 Q BW_{3dB}=\frac{f_0}{Q} BW3dB=Qf0
矩形系数 B W 0.1 / B W 3 d B {BW_{0.1}/BW_{3dB}} BW0.1/BW3dB 3 d B 指 功 率 减 半 幅 值 降 为 最 高 点 的 1 / 2 _{3dB指功率减半幅值降为最高点的1/\sqrt{2}} 3dB1/2 9.969.96

高选择性 ⇆ \leftrightarrows 宽通频带,无法兼得

  • 相频特性(极限分析)
类型并联谐振回路(负斜率)串联谐振回路(正斜率)
失谐状态 ω < ω o _{\omega < \omega_{o}} ω<ωo回路呈现感性回路呈现容性
失谐状态 ω > ω o _{\omega > \omega_{o}} ω>ωo回路呈现容性回路呈现感性

二、实际谐振回路分析

  • 阻抗串并转换
    请添加图片描述
    R p = r s ( 1 + Q 2 ) ; X p ( 电 抗 = 感 抗 − 容 抗 ) = X s ( 1 + 1 Q 2 ) R_p=r_s(1+Q^2);\quad {X_p}_{(电抗=感抗-容抗)}=X_s(1+\frac{1}{Q^2}) Rp=rs(1+Q2);Xp(=)=Xs(1+Q21)

式中 Q = X s / R s = R p / X p Q= X_s/R_s=R_p/X_p Q=Xs/Rs=Rp/Xp;

  • 实际并联谐振回路分析(有耗电感 L L L与无耗电容 C C C r r r L L L串联损耗电阻)
    谐 振 频 率 : ω p = 1 L C 1 − C r 2 L = ω o 1 − C r 2 L = ω o 1 − 1 Q 0 2 谐振频率:\omega_{p}=\sqrt{\frac{1}{LC}}\sqrt{1-\frac{Cr^2}{L}}=\omega_{o}\sqrt{1-\frac{Cr^2}{L}}=\omega_{o}\sqrt{1-\frac{1}{Q_0^2}} ωp=LC1 1LCr2 =ωo1LCr2 =ωo1Q021

式中 ω o = 1 L C , Q 0 = ω 0 L r \omega_o=\frac{1}{\sqrt{LC}},Q_0=\frac{\omega_0 L}{r} ωo=LC 1Q0=rω0L

  • 有载品质因数
    在这里插入图片描述

1)加入有内阻的 R s R_s Rs电源 I s I_s Is,以及负载 R L R_L RL
2)图中 R p ≈ r Q 0 2 , L p ≈ L R_p\approx rQ_0^2,L_p \approx L RprQ02LpL

有 载 品 质 因 数 : Q e = R T ρ = Q 0 1 + R p R s + R p R L 有载品质因数:Q_e=\frac{R_T}{\rho}=\frac{Q_0}{1+\frac{R_p}{R_s}+\frac{R_p}{R_L}} Qe=ρRT=1+RsRp+RLRpQ0

1) R T = R S ∥ R L ∥ R P R_T=R_S \parallel R_L \parallel R_P RT=RSRLRP
2) ρ = ω o L = 1 ω o C \rho =\omega_oL=\frac{1}{\omega_oC} ρ=ωoL=ωoC1

微信公众号:通信随笔XIDIAN

在这里插入图片描述

这篇关于简单谐振回路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245297

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav