speex降噪算法流程介绍与算法原理

2023-10-20 02:10

本文主要是介绍speex降噪算法流程介绍与算法原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、speex降噪流程介绍

本文对speex去噪算法步骤做一些简要整理和介绍,以提供给对该算法感兴趣的读者参考。

1)preprocess_analysis()包括两部分,主要是加窗交叠傅立叶(fft)变换等常用的信号处理算法。
1.1)预处理
      信号输入,加窗,交叠(overlap),时频傅立叶变换(fft)
1.2)计算能量
      计算频域能量ps,而filterbnak_compute_bank32()计算基于Bark带(临界频带)内的带噪信号能量。
2)update_noise_prob()更新噪声能量,使用的方法比较简单,即一般的固定迭代因子平滑算法;
3)更新mel噪声谱能量;
4)计算后验信噪比和进行先验信噪比更新:
post_SNR = ps/noise - 1;
gamma = 0.1 + 0.89*(old/(old+noise))^2;
priori_SNR= gamma*max(0,post) + (1-gamma)*old_ps/noise;
5)先验信噪比平滑(zeta[i]),用于本底增益计算,计算范围包括fft域和Bark域(Bark域计算后没有用到)。 
6)计算Bark带(临界频带)内的EM算法增益和线性频域上的EM算法增益。
{注:EM(YARIV EPHRAIM 和 DAVID MALAH) 是语音增强领域的泰斗。}
考虑到在临界频带内幅度谱并不一定符合高斯随机分布,所以EM算法在Bark带内不能严格适用,这一点JEAN-MARC也在c代码中做了说明, 所以此处只以线性频率上的EM增益为例进行说明。
    6.1 )   weiner 滤波:prior_snr=   prior_snr /(   prior_snr +1);
    6.2 )  超几何分布增益参数 theta= prior_snr *(1+post_snr);
    6.3)   超几何分布增益 MM=exp(-theta/2)*[(1+theta)*I0(theta/2)+theta*I1(theta/2)];其中I0和I1是贝塞尔函数。
    6.4)   增益 g=min(1,prior_ratio*mm);
    6.5)   p=gain2[i];gain2是由临界频率计算后的增益扩展到线性频域后的增益。
    6.6)   约束增益:如果 g/3>st->gain  则 g=3*st->gain  ;
    6.7)  gain=g;     如果 gain<gain_floor  则  gain =gain_floor  ;
    6.8) 最终幅度谱增益
             gain2={p*sqrt(g)+(1-p)*sqrt(st->gain_floor  )}^2;
  7)将幅度谱增益gain2作用于fft幅度谱

   8)后处理,包括反傅立叶变换(ifft)、加合成窗函数、交叠相加,最终得到去噪以后的时域信号

二、降噪算法原理介绍

    speex降噪算法采用一种基于MMSE短时谱幅度估计的语音增强算法,即STSA-MMSE. 该算法利用了人耳对语音相位变换不敏感的特性,估算得到短时幅度谱之后,利用带噪语音相位信息,合成增强语音。另外spee还应用了MCRA算法进行噪声跟踪,此处不讨论。以下是STSA-MMSE算法原理推导:





三、算法优化思路

 1、优化先验信噪比的估计,先验信噪比能反映声场噪声的变化,其反应速度越灵敏,消噪效果越好。speex中是采用的”直接判决法“估计先验信噪比,该方法中平滑因子是固定的,可以采用自适应变化的平滑因子提高估计准确度。

 2、优化噪声谱跟踪算法,更精准的噪声跟踪对消噪能力提升明显。

 3、优化能量谱计算



这篇关于speex降噪算法流程介绍与算法原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243905

相关文章

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h