进阶实验6-3.2 社交网络图中结点的“重要性”计算 (30 分)

2023-10-19 22:50

本文主要是介绍进阶实验6-3.2 社交网络图中结点的“重要性”计算 (30 分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来。他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互作用,可以增强也可以减弱。而结点根据其所处的位置不同,其在网络中体现的重要性也不尽相同。

“紧密度中心性”是用来衡量一个结点到达其它结点的“快慢”的指标,即一个有较高中心性的结点比有较低中心性的结点能够更快地(平均意义下)到达网络中的其它结点,因而在该网络的传播过程中有更重要的价值。在有N个结点的网络中,结点v​i的“紧密度中心性”Cc(v​i)数学上定义为v​i到其余所有结点v​j (j≠i) 的最短距离d(v​i,v​j)的平均值的倒数:

对于非连通图,所有结点的紧密度中心性都是0。

给定一个无权的无向图以及其中的一组结点,计算这组结点中每个结点的紧密度中心性。

输入格式:

输入第一行给出两个正整数N和M,其中N(≤10 ​4)是图中结点个数,顺便假设结点从1到N编号;M(≤10 5)是边的条数。随后的M行中,每行给出一条边的信息,即该边连接的两个结点编号,中间用空格分隔。最后一行给出需要计算紧密度中心性的这组结点的个数K(≤100)以及K个结点编号,用空格分隔。

输出格式:

按照Cc(i)=x.xx的格式输出K个给定结点的紧密度中心性,每个输出占一行,结果保留到小数点后2位。

输入样例:
9 14
1 2
1 3
1 4
2 3
3 4
4 5
4 6
5 6
5 7
5 8
6 7
6 8
7 8
7 9
3 3 4 9

输出样例:

Cc(3)=0.47
Cc(4)=0.62
Cc(9)=0.35

思路:

直接用弗洛伊德算法求最短路径,对要求的点进行扫描

代码:

#include<iostream>
#include<string>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int f[10005][10005] , dis[10005] , book[10005];
int n , m , k;
int inf = 99999999;
int main()
{cin>>n>>m;for(int i = 1 ; i <= n ; i++)//初始化for(int j = 1 ; j <= n ; j++)if( i == j) f[i][j] = 0;else f[i][j] = inf;int x , y;for(int i = 1 ; i <= m ; i++){cin>>x>>y;f[x][y] = 1;f[y][x] = 1;}for(int k = 1 ; k <= n ; k++)//弗洛伊德算法for(int i = 1 ; i <= n ; i++)for(int j = 1 ; j <= n ; j++)if(f[i][j] > f[i][k] + f[k][j])f[i][j] = f[i][k] + f[k][j];cin>>k;for(int i = 1 ; i <= k ; i++){int t , flag = 1;cin>>t;for(int j = 1 ; j <= n ; j++){dis[j] = f[t][j];if(dis[j] == inf)//这个点不通{flag = 0;break;}}if( flag == 0)//判断联通性cout<<"Cc("<<t<<")=0.00"<<endl;else{int sum = 0;for(int j = 1 ; j <= n ; j++)//求和sum += dis[j];printf("Cc(%d)=%.2f\n" ,t , (n-1)*1.0/sum);}}
}

这篇关于进阶实验6-3.2 社交网络图中结点的“重要性”计算 (30 分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242879

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MySQL进阶之路索引失效的11种情况详析

《MySQL进阶之路索引失效的11种情况详析》:本文主要介绍MySQL查询优化中的11种常见情况,包括索引的使用和优化策略,通过这些策略,开发者可以显著提升查询性能,需要的朋友可以参考下... 目录前言图示1. 使用不等式操作符(!=, <, >)2. 使用 OR 连接多个条件3. 对索引字段进行计算操作4

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

TP-Link PDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务

《TP-LinkPDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务》近期,路由器制造巨头普联(TP-Link)在用户群体中引发了一系列重要变动,上个月,公司发出了一则通知,明确要求所... 路由器厂商普联(TP-Link)上个月发布公告要求所有用户必须完成实名认证后才能继续使用普联提供的 D

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d