本文主要是介绍量子计算与量子信息_量子计算可以帮助逆转气候变化吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
量子计算与量子信息
Currently, there is no way to simulate large complex molecules, like carbon dioxide. Current classical computers cannot simulate these types of molecules because the problem grows exponentially with the size or complexity of the simulated molecules, according to O’Brien, who wrote an article outlining the issue at the World Economic Forum’s annual meeting held recently.
当前,没有任何方法可以模拟大型复杂分子,例如二氧化碳。 O'Brien说,当前的经典计算机无法模拟这些类型的分子,因为问题随着模拟分子的大小或复杂性成倍增长,他在最近举行的世界经济论坛年会上概述了该问题。
“Crudely speaking, if simulating a molecule with 10 atoms takes a minute, a molecule with 11 takes two minutes, one with 12 atoms takes four minutes and so on,” he writes. “This exponential scaling quickly renders a traditional computer useless: simulating a molecule with just 70 atoms would take longer than the lifetime of the universe (13 billion years).”
他写道:“简而言之,如果模拟一个包含10个原子的分子需要一分钟,则模拟一个包含11个原子的分子需要2分钟,而包含12个原子的一个分子则需要4分钟,依此类推。” “这种指数级缩放Swift使传统计算机变得无用:模拟只有70个原子的分子所花费的时间将比宇宙的寿命(130亿年)更长。”
Quantum computers could come to our rescue, added O’Brien. As far back as 1981, Physicist Richard Feynman recognized that quantum computers could perform calculations that would be impossible for classical computers, particularly when it comes to simulating molecules. Microsoft and others have concrete recipes for performing these simulations.
奥布莱恩补充说,量子计算机可以为我们提供帮助。 早在1981年,物理学家理查德·费曼(Richard Feynman)意识到量子计算机可以执行传统计算机无法实现的计算,尤其是在模拟分子时。 Microsoft和其他公司有执行这些模拟的具体方法。
Although CO2 is captured naturally, by oceans and trees, CO2 production has exceeded these natural capture rates for many decades. A catalyst for scrubbing carbon dioxide directly from the atmosphere could be a powerful tool in tackling climate change. Creating those catalysts, though, requires a better understanding of materials science. Most known catalysts contain expensive precious metals or are difficult or expensive to produce and/or deploy.
尽管二氧化碳是被海洋和树木自然捕获的,但数十年来二氧化碳的产量已经超过了这些自然捕获的速率。 直接从大气中清除二氧化碳的催化剂可能是应对气候变化的有力工具。 但是,制造这些催化剂需要对材料科学有更好的了解。 最已知的催化剂包含昂贵的贵金属或难以生产和/或部署或昂贵。
“While we can’t literally turn back time, [it] is a bit like rewinding the emissions clock,” according to Torben Daeneke at RMIT University.
RMIT大学的Torben Daeneke表示:“虽然我们无法从字面上倒退时间,但它有点像倒退排放时钟。”
According to O’Brien, given the infinite number of chemical candidates that are available, experts are optimistic that there is a potential catalyst — or many potential catalysts — that will do the job cheaply and easily. Finding such a catalyst, however, is a daunting task without the ability to simulate the properties of candidate molecules. And that’s where quantum computing could help.
根据O'Brien的说法,鉴于可用的化学候选物数量众多,专家们乐观地认为,有一种潜在的催化剂(或许多潜在的催化剂)可以廉价,轻松地完成这项工作。 然而,寻找这样的催化剂是一项艰巨的任务,无法模拟候选分子的性质。 这就是量子计算可以提供帮助的地方。
救援的量子计算机 (Quantum Computers to the Rescue)
A quantum computers’ ability to simulate molecular models makes it a natural tool for finding those catalysts. But, they’re not ready yet.
量子计算机模拟分子模型的能力使其成为寻找这些催化剂的天然工具。 但是,他们还没有准备好。
“We can currently simulate small molecules on prototype quantum computers with up to a few dozen qubits (the quantum equivalent of classical computer bits),” he writes. “But scaling this to useful tasks, like discovering new CO2 catalysts, will require error correction and simulation to the order of 1 million qubits. It’s a challenge I have long believed will only be met on any human timescale — certainly by the 2030 target for the SDGs — if we use the existing manufacturing capability of the silicon chip industry.”
他写道:“我们目前可以在原型量子计算机上模拟多达几十个量子位的小分子(与传统计算机位的量子等效)。” “但是要将其扩展到有用的任务,例如发现新的二氧化碳催化剂,将需要纠错和模拟到100万个量子比特。 我长期以来一直认为这是一个挑战,如果我们使用硅芯片行业的现有制造能力,那么只有在任何人类时间尺度上都可以应对-当然要实现2030年的SDG目标。”
O’Brien said that it’s not just chemicals in the atmosphere that quantum computers could help us unravel. We could use this power to simulate existing important molecules that we find and use in nature –- including within our own body -– and thereby understand their behavior. There is also an infinite number of new molecules that could be designed for new applications, O’Brien adds.
奥布赖恩说,量子计算机不仅可以帮助我们解开大气中的化学物质。 我们可以利用这种能力来模拟我们在自然界(包括在我们自身体内)发现和使用的现有重要分子,从而了解它们的行为。 O'Brien补充说,还有许多可以设计用于新应用的新分子。
“We might even find a cheap catalyst that enables efficient carbon dioxide recycling and produces useful by-products like hydrogen (a fuel) or carbon monoxide (a common source material in the chemical industry),” O’Brien writes.
O'Brien写道:“我们甚至可能找到一种廉价的催化剂,该催化剂可实现有效的二氧化碳循环利用,并产生有用的副产物,例如氢气(一种燃料)或一氧化碳(化学工业中的常见原料)。”
In fact, quantum simulation could be hugely valuable is in meeting many of the council’s SDGs — Sustainable Development Goals — not only in health, energy, industry, innovation and infrastructure but also in climate action, according to O’Brien. Examples include room-temperature superconductors (that could reduce the 10% of energy production lost in transmission), more efficient processes to produce nitrogen-based fertilizers that feed the world’s population and new, far more efficient batteries. One very powerful application of molecular simulation is in the design of new catalysts that speed up chemical reactions. It is estimated that 90% of all commercially produced chemical products involve catalysts, in living systems, they’re called enzymes.
实际上,根据O'Brien的说法,量子模拟在实现理事会的许多SDG(可持续发展目标)方面可能具有巨大的价值,不仅在健康,能源,工业,创新和基础设施方面,而且在气候行动方面。 例子包括室温超导体(可以减少传输中损失的10%的能源生产),生产为全球人口提供营养的氮基肥料的更有效方法以及新型,效率更高的电池。 分子模拟的一项非常强大的应用是设计可加速化学React的新型催化剂。 据估计,所有商业生产的化学产品中有90%涉及催化剂,在生命系统中,它们被称为酶。
下一步 (Next Steps)
At a recent meeting of the World Economic Forum’s Global Future Councils a team of experts from across industry, academia and beyond met to discuss how quantum computing can help address global challenges, as highlighted by the SDGs, and climate in particular.
在世界经济论坛全球未来理事会的最近一次会议上,来自行业,学术界及其他领域的专家团队举行了会议,讨论了量子计算如何帮助应对可持续发展目标所强调的全球挑战,尤其是气候。
奥布莱恩说,这次会议给他带来了希望和有趣的可能性。 (O’Brien said the meeting offered him hope and intriguing possibilities.)
“As co-chair of the Global Future Council on Quantum Computing, I was excited that we were unanimous in agreeing that the world should devote more resources, including in education, to developing the powerful quantum computing capability that could help tackle climate change, meet the SDGs more widely and much more,” he writes. “We enthusiastically called for more international cooperation to develop this important technology on the 2030 timescale to have an impact on delivering the SDGs, in particular climate. So the real question for me is: can we do it in time? Will we make sufficiently powerful quantum computers on that timeframe? I believe so. There are, of course, many other things we can and should do to tackle climate change, but developing large-scale, error-corrected quantum computers is a hedge we cannot afford to go without.”
“作为全球量子计算未来理事会的联席主席,我很高兴我们一致同意世界应该投入更多的资源,包括教育资源,以开发强大的量子计算能力,以帮助应对气候变化, SDG的范围更广,范围更广。”他写道。 “我们热情地呼吁在2030年的时间尺度上开发这项重要技术的更多国际合作,以对实现可持续发展目标,特别是气候产生影响。 所以对我来说真正的问题是:我们可以及时做到吗? 我们会在那个时间范围内制造足够强大的量子计算机吗? 我相信是这样。 当然,我们可以而且应该做许多其他事情来应对气候变化,但是开发大规模的,经过错误校正的量子计算机是我们不能没有的对冲。”
翻译自: https://habr.com/en/post/500166/
量子计算与量子信息
这篇关于量子计算与量子信息_量子计算可以帮助逆转气候变化吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!