数字图像处理实验记录三(双线性插值和最邻近插值)

2023-10-19 20:53

本文主要是介绍数字图像处理实验记录三(双线性插值和最邻近插值),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:个人实验记录,仅供学习参考,实验报告别用我图

文章目录

  • 一、基础知识
    • 1,为什么要进行插值:
    • 2,双线性插值原理:
    • 3,最邻近插值:
  • 二、实验要求:
    • 1.分别编程实现最近邻插值和双线性插值。
    • 2.任意读入一幅图像,通过上诉两种插值方法,将图像放大2及2.5倍。
    • 3. 显示结果,并进行比较。
  • 三、实验记录:
    • 1,双线性:
    • 2、最邻近:
    • 3,主程序:
  • 四、结果展示
    • 1,原图:
    • 2,长宽各放大2倍:
    • 3,长宽各放大2.5倍:
  • 五、反思总结与收获
    • 1,注意数据类型
    • 2,比较双线性插值与最邻近插值

一、基础知识

1,为什么要进行插值:

有的时候我们要对图像进行放大,当然这里的放大是指放大图像的尺寸,例如把一个100x100大小的图像放大成200x200大小。其实在计算机里面,这个也就相当于把一个100x100的二维矩阵放大成一个200x200的矩阵。而插值,就是将矩阵上的这些位置填上数。缩小同理。

2,双线性插值原理:

我举例说明,如下图,我们要将下面的3x3矩阵放大成4x4的矩阵,这里算放大后矩阵的(2,2)出值应该是多少。
在这里插入图片描述

1)求出放大后图对应原图的位置:
我们不难得知:缩放图像素位置/对应原图上像素位置 = 缩放图尺寸/原图尺寸 = 缩放比例
于是可以求得:对应原图像素位置 = 缩放图像素位置x(原图尺寸/缩放图尺寸)
在这里插入图片描述

2)公式计算:
这里的i+u,j+v是上面通过计算后的原图的对应像素的横纵坐标。一般这个坐标都不是整数,我们通过matlab中的fix()函数(向下取整)来获取i,j的数据,再带入公式计算
在这里插入图片描述
像上图中的(2,2)位置,通过计算后可以得到它对应原图的下标是(1.5,1.5)。1.5向下取整是1,1.5-1=0.5,u,v都是0.5所以也就变成了:
在这里插入图片描述
等于20.75,也就是我们在缩放图的(2,2)位置插入20.75,由于是图像,我们就要将其转为uint8数据
对图像的缩放就是从它的缩放图上遍历每个像素来插值。

3,最邻近插值:

这个就简单了,先求出缩放图像素的原图对应像素下标,对下标四舍五入,然后将四舍五入后的下标带入原图,插入缩放图像素就行了。

二、实验要求:

1.分别编程实现最近邻插值和双线性插值。

2.任意读入一幅图像,通过上诉两种插值方法,将图像放大2及2.5倍。

3. 显示结果,并进行比较。

三、实验记录:

1,双线性:

双线性插值函数double_line_value():

function [value] = double_line_value(S,i,j,k,maxi,maxj)
%此函数用于算双线性插值
%i,j表示坐标
u = i-fix(i);
i = fix(i);
%这里判断下标是否越界
if i < 1i = 1;
elseif i>maxi-1i = maxi-1;
end
v = j-fix(j);
j = fix(j);if j < 1j = 1;
elseif j>maxj-1j = maxj-1;
end
%公式计算
%这里要注意,S图像里的值都是无符号数,
%要先转变数据类型再算
a = double(S(i,j,k));
b = double(S(i+1,j,k));
c = double(S(i,j+1,k));
d = double(S(i+1,j+1,k));value = (1-u)*(1-v)*a+u*(1-v)*b+(1-u)*v*c+u*v*d;end

对整个图像进行双线性插值函数img_to_double_line():

function [S1] = img_to_double_line(S,aim_height,aim_width)
% 这个函数用于对图像进行双线性插值
% 输入 图像S,目标高度,目标宽度
% 输出 图像Sd
[src_height,src_width,src_z] = size(S)
aim_z = src_z;S1 = -1*ones(aim_height,aim_width,aim_z); %初始化结果图,将其中数据全变为-1
%遍历结果图,进行插值
for z = 1:aim_zfor aimy = 1:aim_heightfor aimx=1:aim_width% 计算原图对应像素下标srcx = aimx*(src_width/aim_width);srcy = aimy*(src_height/aim_height);S1(aimy,aimx,z) = double_line_value(S,srcy,srcx,z,src_height,src_width);endend
end[h,w,z]=size(S1);
S1 = uint8(S1);% 将其中数据转为uint8类型end

2、最邻近:

最邻近插值函数recently_value():

function [value] = recently_value(S,i,j,k,maxi,maxj)
%最邻近插值法
%以下为先四舍五入,再插值
i = round(i);
if i < 1i = 1;
elseif i>maxi-1i = maxi-1;
end
j = round(j);
if j < 1j = 1;
elseif j>maxj-1j = maxj-1;
end
value = S(i,j,k);end

对图像进行最邻近插值函数img_to_recently_value():

function [S2] = img_to_recently_value(S,aim_height,aim_width)
% 这个函数用于对图像进行最邻近插值
% 输入 原图片,目标高度,目标宽度
% 输出 图片S2
[src_height,src_width,src_z] = size(S)
aim_z = src_z;
S2 = -1*ones(aim_height,aim_width,aim_z);%初始化矩阵S2
for z = 1:aim_zfor aimy = 1:aim_heightfor aimx=1:aim_widthsrcx = aimx*(src_width/aim_width);srcy = aimy*(src_height/aim_height);S2(aimy,aimx,z) = recently_value(S,srcy,srcx,z,src_height,src_width);endend
end
S2 = uint8(S2);
end

3,主程序:

clc;
clear;
% 实验四,双向线性插值和最邻近插值
S = imread('stone.jpg');
% S = rgb2gray(S);
[src_height,src_width,src_z] = size(S);%获得原图尺寸
figure;
imshow(S);title('原图');
for i=0:0.5:0.5c = 2+i;%放大比例%对放大后的尺寸四舍五入化为整数aim_height = round(c*src_height);aim_width = round(c*src_width);aim_z = src_z;S1 = img_to_double_line(S,aim_height,aim_width);S2 = img_to_recently_value(S,aim_height,aim_width);figure;imshow(S1);title(['双线性插值后图,放大',num2str(c),'倍']);figure;imshow(S2);title(['最近邻插值后图,放大',num2str(c),'倍']);
end

四、结果展示

1,原图:

在这里插入图片描述

2,长宽各放大2倍:

在这里插入图片描述

3,长宽各放大2.5倍:

在这里插入图片描述

五、反思总结与收获

1,注意数据类型

uint8还是很坑的,当我们进行有小数的运算时,最好将其数据转为double类型,最后再转回来。

2,比较双线性插值与最邻近插值

很明显,最邻近插值实现起来很简单,但是在图像上有边缘锯齿化表现,效果不佳。
双线性插值效果相对来说很好,生成的图像给人一种很圆润,很平滑的感觉。

这篇关于数字图像处理实验记录三(双线性插值和最邻近插值)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242309

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据