PLS-DA分类的实现(基于sklearn)

2023-10-19 07:30
文章标签 实现 分类 da sklearn pls

本文主要是介绍PLS-DA分类的实现(基于sklearn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简单介绍

代码实现

数据集划分

选择因子个数

模型训练并分类

调用函数


简单介绍

(此处取自各处资料)    

    PLS-DA既可以用来分类,也可以用来降维,与PCA不同的是,PCA是无监督的,PLS-DA是有监督的。与PCA不同,PCA是无监督,PLS是“有监督”模式的偏最小二乘法分析,当样本组间差异大而组内差异小时,无监督分析方法可以很好的区分组间差异。反之样本组间差异不大,无监督的方法就难以区分组间差异。另外如果组间的差异较小,各组的样本量相差较大,样本量大的那组将会主导模型。有监督的分析(PLS-DA)能够很好的解决这些问题。也就是在分析数据时,已知样本的分组关系,这样可以更好的选择区分各组的特征变量,确定样本之间的关系。DA是判别分析,PLS-DA用偏最小二乘回归的方法,在对数据“降维”的同时,建立了回归模型,并对回归结果进行判别分析。

    本文主要是基于PLS的分类展开。

代码实现

主要参考了这位大佬的: https://zhuanlan.zhihu.com/p/374412915

数据集划分

    首先要把数据集处理成一定的格式,也就是把自变量和因变量搞清楚,做好数据集的分割,然后传回。

def deal_data(path):# 读取自变量和因变量构成的数据矩阵,类别y放最后一列,前面均为xspec = pd.read_excel(path)spec = np.array(spec)  # 直接转化为numpy类型x = spec[:, 0:-1]  # 前面的列均为自变量y = spec[:,-1]# 先做一个数据集的划分train_X, test_X, train_y, test_y = train_test_split(x, y, test_size=0.2)return train_X, test_X, train_y, test_y

选择因子个数

    PLS类似于PCA,是有成分这么一个说法的,不同的成分个数最终得到的效果也不一样,因此我们对于不同的成分个数均进行训练,然后进行交叉验证,观察不同成分个数的表现,从而选择合适的个数。

def accuracy_component(xc, xv, yc, yv, component=8, n_fold=5):# xc表示训练集,xv表示测试集,yc表示训练标签,yv表示测试标签,component表示最多个数,n_fold表示分为几组样本(每次一组作为测试集,交叉验证)k_range = np.linspace(start=1, stop=component, num=component)kf = KFold(n_splits=n_fold, random_state=None, shuffle=True)  # n_splits表示要分割为多少个K子集,交叉验证需要accuracy_validation = np.zeros((1, component))  # 用于存储各个成分数的测试平均精准度accuracyaccuracy_train = np.zeros((1, component))  # 用于存储各个成分数的训练平均精准度accuracyfor j in range(component):  # j∈[0,component-1],j+1∈[1,component]p = 0acc = 0  # acc表示总的精准度,p表示个数,acc/p平均精确度# 下面是普通训练model_pls = PLSRegression(n_components=j + 1)  # 此时选择component个成分yc_labels = pd.get_dummies(yc)model_pls.fit(xc, yc_labels)y_pred = model_pls.predict(xv)y_pred = np.array([np.argmax(i) for i in y_pred])accuracy_train[:, j] = accuracy_score(yv, y_pred)  # 这是直接训练的# 下面是交叉验证for train_index, test_index in kf.split(xc):  # 进行n_fold轮交叉验证# 划分数据集X_train, X_test = xc[train_index], xc[test_index]y_train, y_test = yc[train_index], yc[test_index]YC_labels = pd.get_dummies(y_train)  # 训练数据结果独热编码model_1 = PLSRegression(n_components=j + 1)model_1.fit(X_train, YC_labels)Y_pred = model_1.predict(X_test)Y_pred = np.array([np.argmax(i1) for i1 in Y_pred])  # 独热编码转化成类别变量acc = accuracy_score(y_test, Y_pred) + accp = p + 1accuracy_validation[:, j] = acc / p  # 计算j+1个成分的平均精准度# 首先对于每个component数训练一个模型,然后利用测试集得出准确率print('模型训练的准确率')print(accuracy_train)# 然后对样本的训练集进行交叉验证print('交叉验证的平均准确率')print(accuracy_validation)plt.plot(k_range, accuracy_train.T, 'o-', label="Training", color="r")plt.plot(k_range, accuracy_validation.T, 'o-', label="Cross-validation", color="b")plt.xlabel("N components")plt.ylabel("Score")plt.legend(loc="best")  # 选取最佳位置标注图注plt.rc('font', family='Times New Roman')plt.rcParams['font.size'] = 10plt.show()return accuracy_validation, accuracy_train

    下面是运行效果,因为数据是乱造的所以参数就不用关注了,这样来看的话三到四个因子效果还不错。

模型训练并分类

    下面就是选择合适的成分个数进行分类,得到混淆矩阵和一些参数指标。

def PLS_DA(train_X, test_X, train_y, test_y):# 建模model = PLSRegression(n_components=6)train_y = pd.get_dummies(train_y)model.fit(train_X, train_y)# 预测y_pred = model.predict(test_X)# 将预测结果(类别矩阵)转换为数值标签y_pred = np.array([np.argmax(i) for i in y_pred])# 模型评价---混淆矩阵和精度print('测试集混淆矩阵为:\n', confusion_matrix(test_y, y_pred))print('平均分类准确率为:\n', accuracy_score(test_y, y_pred))

     运行效果,至少比乱分类的33%正确率要高。

调用函数

     以上都是各个组件,最后需要一个主函数调用串联起来,如下,    建议分步调用,也便于问题的发现和处理。

max_component = 8 # 迭代最大成分数
n_fold = 10  # 交叉验证次数
excel_path = './data.xlsx'  # 数据集地址
if __name__ == '__main__':train_X, test_X, train_y, test_y = deal_data(excel_path)  # 处理数据,返回处理完的训练和测试集,具体情况具体分析# accuracy_component(train_X, test_X, train_y, test_y, max_component, n_fold)PLS_DA(train_X, test_X, train_y, test_y,n_components=3)

这篇关于PLS-DA分类的实现(基于sklearn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238290

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import