【C++学习手札】一文带你初识运算符重载

2023-10-19 01:20

本文主要是介绍【C++学习手札】一文带你初识运算符重载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                         食用指南:本文在有C基础的情况下食用更佳   

                                        🍀本文前置知识: C++类 

                                        ♈️今日夜电波:クリームソーダとシャンデリア—Edo_Ame江户糖

                                                                1:20 ━━━━━━️💟──────── 3:40
                                                                    🔄   ◀️   ⏸   ▶️    ☰ 

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍 


目录

💓一、运算符重载基本概念

什么是运算符重载?

运算符重载简要干货

可重载的运算符有哪些? 

💗二、前置知识-友元函数 

 什么是友元函数?

 友元函数的语法

 💞三、运算符重载

运算符重载的语法

一步一步带你实现运算符重载(以<<为例)

运算符重载作为成员函数以及全局函数的实现(以+为例)

全局函数

成员函数

💕四、++和--运算符重载 (重要、常用)

💘具体实现用例 


一、运算符重载基本概念

什么是运算符重载?

        运算符重载, 就是对已有的运算符重新进行定义, 赋予其另一种功能, 以适应不同
的数据类型。
        运算符重载(operator overloading)只是一种”语法上的方便”,也就是它只是另一种函
数调用的方式。

        在 c++中, 可以定义一个处理类的新运算符。 这种定义很像一个普通的函数定义,只是函数的名字由关键字 operator 及其紧跟的运算符组成。 差别仅此而已。 它像任何其他函数一样也是一个函数, 当编译器遇到适当的模式时, 就会调用这个函数。

运算符重载简要干货

        运算符重载的目的:简化操作 让已有的运算符 适应适应不同的数据类型。
        语法:函数的名字由关键字operator及其紧跟的运算符组成
        比如:重载+运算符 ==>     operator+ 重载=号运算     ==>     operator=
        注意:重载运算符 不要更改 运算符的本质操作(+是数据的相加 不要重载成相减)

         栗子:(以下为重载了<<运算符的类)

class Data
{friend ostream& operator<<(ostream& out, Data& ob);//友元函数,经常与运算符重载搭配使用
private:int a;int b;
public:Data(){cout << "无参的构造函数" << endl;a = 0;b = 0;}Data(int a, int b) :a(a), b(b){cout << "有参构造" << endl;//this‐>a = a;//this‐>b = b;}void showData(void){cout << "a = " << a << ", b= " << b << endl;}~Data(){cout << "析构函数函数" << endl;}
};ostream& operator<<(ostream& out, Data& ob){out << "a = " << ob.a << ", b = " << ob.b;return out;}

        解释:

        为了简化类中访问私有数据较为困难的问题,运用友元函数(下小点会提到)同重载运算符的结合,得以运用我们较为常用的<<直接输出数据。

可重载的运算符有哪些? 

        几乎 C 中所有的运算符都可以重载, 但运算符重载的使用时相当受限制的。 特别是不能使用 C 中当前没有意义的运算符(例如用**求幂)不能改变运算符优先级, 不能改变运算符的参数个数。 这样的限制有意义, 否则, 所有这些行为产生的运算符只会混淆而不是澄清寓语意。

        一张图囊括~ 


二、前置知识-友元函数 

 什么是友元函数?

一句话概括:C++允许 友元 访问 私有数据。

 友元函数的语法

friend+定义的函数

      注意:  friend关键字只出现在声明处 其他类、类成员函数、全局函数都可声明为友元 友元函数不是类的成员,不带this指针 友元函数可访问对象任意成员属性,包括私有属性。

        栗子: (创建一个房间类,你只准许你的朋友进入你的卧室,但是客厅是谁都可以进的)

class Room{//将goodGayVisit作为类的友元函数//goodGayVisit 访问 类中所有数据 但是 它不是类的成员friend void goodGayVisit(Room & room);private:string bedRoom;//卧室public:string sittingRoom;//客厅public: Room(){this-> bedRoom = "卧室";this-> sittingRoom = "客厅";}};// 普通全局函数 作为 类的友元//好基友 访问 我的房间void goodGayVisit(Room & room){cout << "好基友访问了你的" << room.sittingRoom << endl;cout << "好基友访问了你的" << room.bedRoom << endl;//ok}void test01(){Room myRoom;goodGayVisit(myRoom);
}

        friend在这里可以访问对象任意成员属性,包括私有属性。因此,本来不能访问的私有数据,在friend的情况下就可以访问了!结果如下:

        此为普通全局函数 作为 类的友元 。当然,也有类的某个成员函数 作为 另一个类的友元;一个类整体 作为 另一个类的友元等等。

        而我们的友元函数大多应用在重载运算符上!

         本文仅仅对友元函数做简单介绍,如果大家需要详解,请在评论区或者私信踢我一脚o(╯□╰)o,作者肯定会出一篇的!


 三、运算符重载

运算符重载的语法

(根据自身改变的返回类型)operator + 重载的运算符(根据实际情况改变的传参)
  1. 函数声明:运算符重载是通过在类中定义特殊的成员函数来实现的。这些成员函数被称为运算符重载函数。例如,如果要重载"+"运算符,则需要在类中声明一个名为"operator+"的函数。

  2. 函数名:运算符重载函数的命名规则是以"operator"关键字开始,后面跟着要重载的运算符符号。例如,要重载"+“运算符,函数名应为"operator+”。

  3. 参数列表:运算符重载函数的参数列表取决于所重载的运算符。例如,对于二元运算符如"+", “-”, “*”, “/“等,参数列表应包含一个额外的参数,表示右操作数。对于一元运算符如”++”, "– – "等,参数列表不需要额外的参数。

  4. 返回类型:运算符重载函数的返回类型取决于所重载的运算符。例如,对于"+"运算符,返回类型通常是所操作对象的类型。

  5. 成员函数或友元函数:运算符重载函数可以作为类的成员函数或友元函数来定义。成员函数形式的运算符重载函数将使用对象本身作为左操作数,而友元函数形式的运算符重载函数将不使用任何对象。


一步一步带你实现运算符重载(以<<为例)

        注意:此代码未能实现重载 下文为对用cout来输出类的一个引入

#define _CRT_SECURE_NO_WARNINGS 01
#include <iostream>
#include<string.h>using namespace std;class Person{private:char* name;int num;public:Person(char* name, int num){this-> name = new char[strlen(name) + 1];strcpy(this-> name, name);this-> num = num;cout << "有参构造" << endl;}//普通的成员函数void printPerson(void){cout << "name = " << name << ", num = " << num << endl;}~Person(){if (this-> name != NULL){delete[] this-> name;this-> name = NULL;}cout << "析构函数" << endl;}};int main(int argc, char* argv[]){char arr[] = "lucy";Person ob1(arr, 18);//普通的成员函数 遍历信息//ob1.printPerson();//cout默认输出方式 无法识别 自定义对象 输出格式cout<<ob1<<endl;//errreturn 0;}

        运行改代码,我们发现编译器报错!如下图:

         这个时候我们就需要对运算符进行重载了!

        那么问题又来了?如何重载运算符呢?根据上文所提到的语法,我们做出以下的操作:

        运用operator来重载<<运算符

 ostream& operator<<(ostream& out, Person& ob)//out=cout, ob =ob1{//重新实现 输出格式out << ob.name << ", " << ob.num;//每次执行为 返回值得到coutreturn out;}

        注意:ostream为cout的类型,定义ostream&为返回类型是为了作为起到链接的效果,如:

cout<<ob1<<ob2<<endl;ostream&返回out,然后再次被后面所调用,一直反复调用下去。

        然而,进行了运算符重载,就能实现我们想要的效果了吗?答案是不能,见下图:

         造成这样的原因是什么呢?还是类的封装问题,私有的数据不能被外界所访问!这时,我们就需要用到友元函数来帮助我们实现了!

         于是,我们将operator<<设置成友元:

#define _CRT_SECURE_NO_WARNINGS 01
#include <iostream>
#include<string.h>using namespace std;class Person{//设置成友元函数 在函数内 访问Person类中的所有数据friend ostream & operator<<(ostream & out, Person & ob);private:char* name;int num;public:Person(char* name, int num){this-> name = new char[strlen(name) + 1];strcpy(this-> name, name);this-> num = num;cout << "有参构造" << endl;}//普通的成员函数void printPerson(void){cout << "name = " << name << ", num = " << num << endl;}~Person(){if (this-> name != NULL){delete[] this-> name;this-> name = NULL;}cout << "析构函数" << endl;}};ostream& operator<<(ostream& out, Person& ob)//out=cout, ob =ob1{//重新实现 输出格式out << ob.name << ", " << ob.num;//每次执行为 返回值得到coutreturn out;}int main(int argc, char* argv[]){char arr[] = "lucy";Person ob1(arr, 18);//普通的成员函数 遍历信息//ob1.printPerson();//cout默认输出方式 无法识别 自定义对象 输出格式cout<<ob1<<endl;//errreturn 0;}

        实现效果如下:


运算符重载作为成员函数以及全局函数的实现(以+为例)

全局函数

        这里同上面的栗子大致一样,不过多叙述

#include <iostream>#include<string.h>using namespace std;class Person{//设置成友元函数 在函数内 访问Person类中的所有数据friend ostream & operator<<(ostream & out, Person & ob);friend Person operator+(Person & ob1, Person & ob2);private:char* name;int num;public:Person(){this-> name = NULL;this-> num = 0;cout << "无参构造" << endl;}Person(char* name, int num){this-> name = new char[strlen(name) + 1];strcpy(this-> name, name);this-> num = num;cout << "有参构造" << endl;}//普通的成员函数void printPerson(void){cout << "name = " << name << ", num = " << num << endl;}~Person(){if (this-> name != NULL){delete[] this-> name;this-> name = NULL;}cout << "析构函数" << endl;}};//全局函数作为友元 完成运算符重载<<ostream & operator<<(ostream & out, Person & ob)//out=cout, ob =ob1{//重新实现 输出格式out << ob.name << ", " << ob.num;//每次执行为 返回值得到coutreturn out;}//全局函数作为友元 完成运算符重载+Person operator+(Person & ob1, Person & ob2)//ob1 ob2{ //name+name(字符串追加)char* tmp_name = new char[strlen(ob1.name) + strlen(ob2.name) + 1];strcpy(tmp_name, ob1.name);strcat(tmp_name, ob2.name);//num+num(数值相加)int tmp_num = ob1.num + ob2.num;Person tmp(tmp_name, tmp_num);//释放tmp_name的空间if (tmp_name != NULL){delete[] tmp_name;tmp_name = NULL;}return tmp;}void test02(){char arr[] = "lucy";Person ob1(arr, 18);  char arr2[] = "bob";Person ob2(arr2, 19);cout << ob1 << endl;cout << ob2 << endl;//Person ob3 = operator+(ob1,ob2);Person ob3 = ob1 + ob2;cout << ob3 << endl;}int main(int argc, char* argv[]){test02();return 0;}
成员函数
#include <iostream>#include<string.h>using namespace std;class Person{ //设置成友元函数 在函数内 访问Person类中的所有数据friend ostream & operator<<(ostream & out, Person & ob);private:char* name;int num;public:Person(){this-> name = NULL;this-> num = 0;cout << "无参构造" << endl;}Person(char* name, int num){this-> name = new char[strlen(name) + 1];strcpy(this-> name, name);this-> num = num;cout << "有参构造" << endl;}//成员函数 完成运算符重载 ob1用this代替 ob2用参数ob代替Person operator+(Person & ob){//this ==> &ob1//name+name(字符串追加)char* tmp_name = new char[strlen(this-> name) + strlen(ob.name) + 1];strcpy(tmp_name, this-> name);strcat(tmp_name, ob.name);//num+num(数值相加)int tmp_num = this-> num + ob.num;Person tmp(tmp_name, tmp_num);//释放tmp_name的空间if (tmp_name != NULL){delete[] tmp_name;tmp_name = NULL;}return tmp;}//普通的成员函数void printPerson(void){cout << "name = " << name << ", num = " << num << endl;}~Person(){if (this-> name != NULL){delete[] this-> name;this-> name = NULL;}cout << "析构函数" << endl;}};//全局函数作为友元 完成运算符重载<<ostream & operator<<(ostream & out, Person & ob)//out=cout, ob =ob1{//重新实现 输出格式out << ob.name << ", " << ob.num;//每次执行为 返回值得到coutreturn out;}void test03(){char arr[] = "lucy";char arr2[] = "bob";Person ob1(arr, 18);Person ob2(arr2, 19);//Person ob3 = ob1.operator+(ob2);Person ob3 = ob1 + ob2;cout << ob3 << endl;}int main(int argc, char* argv[]){ test03();return 0;}

        在运算符重载运算符时,如果我们以成员函数的方式定义,则可以直接访问类中的数据,无需再使用友元函数来定义。因此我们在重载运算符时最好是以成员函数的方式重载!


四、++和--运算符重载 (重要、常用)

        不知道大家有没有一个疑惑如果我们实现前置+ +、后置+ +以及前置- -、后置--,运用operator时如何区分他们呢?

        此时,我们又要提到一个概念,当编译器看到++a(前置++),它就调用operator++(a),当编译器看到a++(后置++),它就会去调用operator++(a,int)。 - -也是同样的道理,具体实现如下:

具体实现用例 

#include <iostream>using namespace std;class Data{friend ostream & operator<<(ostream & out, Data & ob);private:int a;int b;public:Data(){cout << "无参的构造函数" << endl;a = 0;b = 0;}Data(int a, int b) :a(a), b(b){cout << "有参构造" << endl;//this‐>a = a;//this‐>b = b;}void showData(void){cout << "a = " << a << ", b= " << b << endl;}~Data(){cout << "析构函数函数" << endl;}//成员函数 重载前置++ ++ob1 (先加 后使用)//编译器 默认识别 operator++(a) //但是a可以用this代替 从而化简 operator++()Data & operator++()//++ob1{ //先加a++;//this‐>a = this‐>a +1b++;//this‐>b = this‐>b +1//后使用return *this;}//成员函数 重载后置++ ob1++ (先使用 后加)//编译器 默认识别 operator++(a,int) //但是a可以用this代替 从而化简 operator ++(int)Data & operator++(int)//ob1++{//先使用(备份加之前的值)static Data old = *this;//后加a++;b++;//返回备份值return old;}//重载前置‐‐ ‐‐ob3//编译器 默认识别 operator++(a) //但是a可以用this代替 从而化简 operator‐‐()Data & operator--(){//先减a--;b--;//后使用(返回)return *this;}//重载后‐‐ ob4‐‐//编译器 默认识别 operator++(a,int) //但是a可以用this代替 从而化简 operator++(int)Data & operator--(int){//先使用static Data old = *this;//再减a--;b--;return old;}};//普通全局函数 作为类的友元 重载<<运算符ostream & operator<<(ostream & out, Data & ob){out << "a = " << ob.a << ", b = " << ob.b;return out;}void test01(){Data ob1(10, 20);ob1.showData();//重载<<直接输出自定义对象的值//operator<<(cout,ob1);cout << ob1 << endl;//成员函数 重载 ++运算符cout << ++ob1 << endl;Data ob2(10, 20);cout << ob2++ << endl;cout << ob2 << endl;//成员函数 重载 ‐‐运算符Data ob3(10, 20);cout << "ob3 " << ob3 << endl;cout << --ob3 << endl;Data ob4(10, 20);cout << "ob4 " << ob4 << endl;cout << ob4-- << endl;cout << "ob4 " << ob4 << endl; }int main(int argc, char* argv[]){test01();return 0;}

        效果如下: 


                感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o!  

                                 

                                                                 给个三连再走嘛~      

这篇关于【C++学习手札】一文带你初识运算符重载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/236365

相关文章

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML