GEE19:基于Landsat8的常见的植被指数逐年获取

2023-10-18 21:36

本文主要是介绍GEE19:基于Landsat8的常见的植被指数逐年获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

植被指数逐年获取

  • 1. 常见的植被指数
    • 1.1 比值植被指数(Ratio vegetation index,RVI)
    • 1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)
    • 1.3 增强植被指数(Enhanced Vegetation Index,EVI)
    • 1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)
    • 1.5 差值植被指数(Difference Vegetation Index,DVI)
    • 1.6 计算公式
  • 2. GEE code
  • 3. 参考

1. 常见的植被指数

1.1 比值植被指数(Ratio vegetation index,RVI)

  RVI值的范围:0-30+,一般绿色植被区的范围是2-8,无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
  RVI是绿色植物的敏感参数,可以及时反映出作物 LAI 的变化。植被覆盖度影响 RVI,当植被覆盖度较高时,RVI 对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低。

1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)

  NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件相关辐射照度变化的影响,常用于研究植被生长状态及覆盖度。
  NDVI在LAI值很高,即植被茂密时其灵敏度会降低。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;值的范围是 -1 ~ 1,一般绿色植被区的范围是0.2 ~ 0.8。

1.3 增强植被指数(Enhanced Vegetation Index,EVI)

  EVI 加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。EVI常用于LAI值高,即植被茂密区。值的范围是-1~1,一般绿色植被区的范围时0.2 ~ 0.8

1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)

  目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

1.5 差值植被指数(Difference Vegetation Index,DVI)

  DVI对土壤背景的变化较 RVI 敏感,植被覆盖度高时,对植被的敏感度有所下降,适宜于冬小麦初期的植被覆盖研究。

1.6 计算公式

在这里插入图片描述
在这里插入图片描述

2. GEE code

  获取多种植被主要通过USGS Landsat 8 Level 2, Collection 2, Tier 1提取,数据如下:
在这里插入图片描述

var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019").filter(ee.Filter.eq('provinces','beijing'));
var roi = table.geometry();
Map.addLayer(roi, {'color':'blue'}, 'StudyArea');
Map.centerObject(roi, 6);var year_name = 2014;
var start_date = (year_name) + '-01-01';
var end_date   = (year_name + 1) + '-01-01';
var cloudCover = 20//****************************************************************************************************
//****************************************************************************************************
// indices
function DVI(img) {var red = img.select("red");var nir = img.select("nir");var dvi = img.expression("(nir - red)",{"red": red,"nir": nir});return dvi;
}function RVI(img) {var nir = img.select("nir");var red = img.select("red");var rvi = img.expression("(nir/red)",{"nir": nir,"red": red});return rvi;
}function NDVI(img) {var nir = img.select("nir");var red = img.select("red");var ndvi = img.expression("(nir - red)/(nir + red)",{"nir": nir,"red": red});return ndvi;
}function EVI(img) {var nir = img.select("nir");var red = img.select("red");var blue = img.select("blue");var evi = img.expression("2.5 * (nir - red)/(nir + 6 * red - 7.5 * blue + 1)",{"nir": nir,"red": red,"blue": blue});return evi;
}function SAVI(img) {var nir = img.select("nir");var red = img.select("red");var savi = img.expression("1.5 * (nir - red)/(nir + red + 0.5)",{"nir": nir,"red": red});return savi;
}// cloud
function bandRenameL8(image) {var blue = image.select(['SR_B2']).rename('blue');var green = image.select(['SR_B3']).rename('green');var red = image.select(['SR_B4']).rename('red');var nir = image.select(['SR_B5']).rename('nir');var swir1 = image.select(['SR_B6']).rename('swir1');var swir2 = image.select(['SR_B7']).rename('swir2');var new_image = blue.addBands([green, red, nir, swir1, swir2]);return new_image;
}function applyScaleFactorsL8(image) {var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);return image.addBands(opticalBands, null, true).addBands(thermalBands, null, true);
}function cloudmaskL8(image) {// Bits 3 and 5 are cloud shadow and cloud, respectively.var cloudShadowBitMask = (1 << 4);var cloudsBitMask = (1 << 3);// Get the pixel QA band.var qa = image.select('QA_PIXEL');// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0).and(qa.bitwiseAnd(cloudsBitMask).eq(0));return image.updateMask(mask);
}//****************************************************************************************************
//****************************************************************************************************
for(var i = year_name; i <= 2016; i++){
// get image collection
var l8_col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterBounds(roi).filterDate(start_date, end_date).filter(ee.Filter.lt('CLOUD_COVER', cloudCover)).map(applyScaleFactorsL8).map(cloudmaskL8).map(bandRenameL8);
print('landsat8', l8_col.size())// combine, mean and calculate
var image = l8_col
print("final image count", l8_col.size(), l8_col)
var final_image = image.mean().clip(roi);
print(final_image) // 6 bands(red,blue,green,nir...)
var image_dvi= DVI(final_image)
var image_rvi = RVI(final_image)
var image_ndvi= NDVI(final_image)
var image_evi= EVI(final_image)
var image_savi= SAVI(final_image)Map.addLayer(final_image, {bands: ["red", "green", "blue"], min:0.0, max:0.25}, "image")var ndwi_palettes = ["ffffff","#f9f9f9","#d8fdf4","#7dd5e9","3d7ede","243ad4","#1c00b8", "#250081"];
var ndvi_palettes = ["#e700d5", "#e60000", "#e69f00", "#dfe200", "#7ebe00", "#00a10c", "#008110"];//Map.addLayer(image_dvi.clip(roi), {min:-1, max:1, palette:ndwi_palettes}, "dvi");
//Map.addLayer(image_rvi.clip(roi), {min:0, max:30, palette:ndwi_palettes}, "rvi");
Map.addLayer(image_ndvi.clip(roi), {min:-0.3, max:1, palette:ndvi_palettes}, "ndvi");
//Map.addLayer(image_evi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "ndwi");
Map.addLayer(image_savi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "savi");// export to drive
Export.image.toDrive({image: image_dvi.clip(roi),folder: "LUCC",description: "image_dvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_rvi.clip(roi),folder: "LUCC",description: "image_rvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_ndvi.clip(roi),folder: "LUCC",description: "image_ndvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_evi.clip(roi),folder: "LUCC",description: "image_evi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_savi.clip(roi),folder: "LUCC",description: "image_savi" + i,scale: 30,region: roi,maxPixels: 1e13})
}

研究区:

在这里插入图片描述

NDVI:

在这里插入图片描述
SAVISAVI:

3. 参考

  • 光谱植被指数与水稻叶面积指数相关性的研究

这篇关于GEE19:基于Landsat8的常见的植被指数逐年获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235271

相关文章

Android Environment 获取的路径问题

1. 以获取 /System 路径为例 /*** Return root of the "system" partition holding the core Android OS.* Always present and mounted read-only.*/public static @NonNull File getRootDirectory() {return DIR_ANDR

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

JS和jQuery获取节点的兄弟,父级,子级元素

原文转自http://blog.csdn.net/duanshuyong/article/details/7562423 先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作对比。 JS的方法会比JQUERY麻烦很多,主要则是因为FF浏览器,FF浏览器会把你的换行也当最DOM元素。 <div id="test"><div></div><div></div

【Kubernetes】常见面试题汇总(三)

目录 9.简述 Kubernetes 的缺点或当前的不足之处? 10.简述 Kubernetes 相关基础概念? 9.简述 Kubernetes 的缺点或当前的不足之处? Kubernetes 当前存在的缺点(不足)如下: ① 安装过程和配置相对困难复杂; ② 管理服务相对繁琐; ③ 运行和编译需要很多时间; ④ 它比其他替代品更昂贵; ⑤ 对于简单的应用程序来说,可能不

【附答案】C/C++ 最常见50道面试题

文章目录 面试题 1:深入探讨变量的声明与定义的区别面试题 2:编写比较“零值”的`if`语句面试题 3:深入理解`sizeof`与`strlen`的差异面试题 4:解析C与C++中`static`关键字的不同用途面试题 5:比较C语言的`malloc`与C++的`new`面试题 6:实现一个“标准”的`MIN`宏面试题 7:指针是否可以是`volatile`面试题 8:探讨`a`和`&a`

vcpkg子包路径批量获取

获取vcpkg 子包的路径,并拼接为set(CMAKE_PREFIX_PATH “拼接路径” ) import osdef find_directories_with_subdirs(root_dir):# 构建根目录下的 "packages" 文件夹路径root_packages_dir = os.path.join(root_dir, "packages")# 如果 "packages"

Weex入门教程之4,获取当前全局环境变量和配置信息(屏幕高度、宽度等)

$getConfig() 获取当前全局环境变量和配置信息。 Returns: config (object): 配置对象;bundleUrl (string): bundle 的 url;debug (boolean): 是否是调试模式;env (object): 环境对象; weexVersion (string): Weex sdk 版本;appName (string): 应用名字;

常见的服务器

常见的Web服务器 1、Tomcat:Tomcat和Java结合得最好,是Oracle官方推荐的JSP服务器。Tomcat是开源的Web服务器,经过长时间的发展,性能、稳定性等方面都非常优秀。 2、Jetty:另一个优秀的Web服务器。Jetty有个更大的优点是,Jetty可作为一个嵌入式服务器,即:如果在应用中加入Jetty的JAR文件,应用可在代码中对外提供Web服务。 3、Resin:

MFC中App,Doc,MainFrame,View各指针的互相获取

纸上得来终觉浅,为了熟悉获取方法,我建了个SDI。 首先说明这四个类的执行顺序是App->Doc->Main->View 另外添加CDialog类获得各个指针的方法。 多文档的获取有点小区别,有时间也总结一下。 //  App void CSDIApp::OnApp() {      //  App      //  Doc     CDocument *pD