GEE19:基于Landsat8的常见的植被指数逐年获取

2023-10-18 21:36

本文主要是介绍GEE19:基于Landsat8的常见的植被指数逐年获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

植被指数逐年获取

  • 1. 常见的植被指数
    • 1.1 比值植被指数(Ratio vegetation index,RVI)
    • 1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)
    • 1.3 增强植被指数(Enhanced Vegetation Index,EVI)
    • 1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)
    • 1.5 差值植被指数(Difference Vegetation Index,DVI)
    • 1.6 计算公式
  • 2. GEE code
  • 3. 参考

1. 常见的植被指数

1.1 比值植被指数(Ratio vegetation index,RVI)

  RVI值的范围:0-30+,一般绿色植被区的范围是2-8,无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
  RVI是绿色植物的敏感参数,可以及时反映出作物 LAI 的变化。植被覆盖度影响 RVI,当植被覆盖度较高时,RVI 对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低。

1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)

  NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件相关辐射照度变化的影响,常用于研究植被生长状态及覆盖度。
  NDVI在LAI值很高,即植被茂密时其灵敏度会降低。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;值的范围是 -1 ~ 1,一般绿色植被区的范围是0.2 ~ 0.8。

1.3 增强植被指数(Enhanced Vegetation Index,EVI)

  EVI 加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。EVI常用于LAI值高,即植被茂密区。值的范围是-1~1,一般绿色植被区的范围时0.2 ~ 0.8

1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)

  目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

1.5 差值植被指数(Difference Vegetation Index,DVI)

  DVI对土壤背景的变化较 RVI 敏感,植被覆盖度高时,对植被的敏感度有所下降,适宜于冬小麦初期的植被覆盖研究。

1.6 计算公式

在这里插入图片描述
在这里插入图片描述

2. GEE code

  获取多种植被主要通过USGS Landsat 8 Level 2, Collection 2, Tier 1提取,数据如下:
在这里插入图片描述

var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019").filter(ee.Filter.eq('provinces','beijing'));
var roi = table.geometry();
Map.addLayer(roi, {'color':'blue'}, 'StudyArea');
Map.centerObject(roi, 6);var year_name = 2014;
var start_date = (year_name) + '-01-01';
var end_date   = (year_name + 1) + '-01-01';
var cloudCover = 20//****************************************************************************************************
//****************************************************************************************************
// indices
function DVI(img) {var red = img.select("red");var nir = img.select("nir");var dvi = img.expression("(nir - red)",{"red": red,"nir": nir});return dvi;
}function RVI(img) {var nir = img.select("nir");var red = img.select("red");var rvi = img.expression("(nir/red)",{"nir": nir,"red": red});return rvi;
}function NDVI(img) {var nir = img.select("nir");var red = img.select("red");var ndvi = img.expression("(nir - red)/(nir + red)",{"nir": nir,"red": red});return ndvi;
}function EVI(img) {var nir = img.select("nir");var red = img.select("red");var blue = img.select("blue");var evi = img.expression("2.5 * (nir - red)/(nir + 6 * red - 7.5 * blue + 1)",{"nir": nir,"red": red,"blue": blue});return evi;
}function SAVI(img) {var nir = img.select("nir");var red = img.select("red");var savi = img.expression("1.5 * (nir - red)/(nir + red + 0.5)",{"nir": nir,"red": red});return savi;
}// cloud
function bandRenameL8(image) {var blue = image.select(['SR_B2']).rename('blue');var green = image.select(['SR_B3']).rename('green');var red = image.select(['SR_B4']).rename('red');var nir = image.select(['SR_B5']).rename('nir');var swir1 = image.select(['SR_B6']).rename('swir1');var swir2 = image.select(['SR_B7']).rename('swir2');var new_image = blue.addBands([green, red, nir, swir1, swir2]);return new_image;
}function applyScaleFactorsL8(image) {var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);return image.addBands(opticalBands, null, true).addBands(thermalBands, null, true);
}function cloudmaskL8(image) {// Bits 3 and 5 are cloud shadow and cloud, respectively.var cloudShadowBitMask = (1 << 4);var cloudsBitMask = (1 << 3);// Get the pixel QA band.var qa = image.select('QA_PIXEL');// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0).and(qa.bitwiseAnd(cloudsBitMask).eq(0));return image.updateMask(mask);
}//****************************************************************************************************
//****************************************************************************************************
for(var i = year_name; i <= 2016; i++){
// get image collection
var l8_col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterBounds(roi).filterDate(start_date, end_date).filter(ee.Filter.lt('CLOUD_COVER', cloudCover)).map(applyScaleFactorsL8).map(cloudmaskL8).map(bandRenameL8);
print('landsat8', l8_col.size())// combine, mean and calculate
var image = l8_col
print("final image count", l8_col.size(), l8_col)
var final_image = image.mean().clip(roi);
print(final_image) // 6 bands(red,blue,green,nir...)
var image_dvi= DVI(final_image)
var image_rvi = RVI(final_image)
var image_ndvi= NDVI(final_image)
var image_evi= EVI(final_image)
var image_savi= SAVI(final_image)Map.addLayer(final_image, {bands: ["red", "green", "blue"], min:0.0, max:0.25}, "image")var ndwi_palettes = ["ffffff","#f9f9f9","#d8fdf4","#7dd5e9","3d7ede","243ad4","#1c00b8", "#250081"];
var ndvi_palettes = ["#e700d5", "#e60000", "#e69f00", "#dfe200", "#7ebe00", "#00a10c", "#008110"];//Map.addLayer(image_dvi.clip(roi), {min:-1, max:1, palette:ndwi_palettes}, "dvi");
//Map.addLayer(image_rvi.clip(roi), {min:0, max:30, palette:ndwi_palettes}, "rvi");
Map.addLayer(image_ndvi.clip(roi), {min:-0.3, max:1, palette:ndvi_palettes}, "ndvi");
//Map.addLayer(image_evi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "ndwi");
Map.addLayer(image_savi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "savi");// export to drive
Export.image.toDrive({image: image_dvi.clip(roi),folder: "LUCC",description: "image_dvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_rvi.clip(roi),folder: "LUCC",description: "image_rvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_ndvi.clip(roi),folder: "LUCC",description: "image_ndvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_evi.clip(roi),folder: "LUCC",description: "image_evi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_savi.clip(roi),folder: "LUCC",description: "image_savi" + i,scale: 30,region: roi,maxPixels: 1e13})
}

研究区:

在这里插入图片描述

NDVI:

在这里插入图片描述
SAVISAVI:

3. 参考

  • 光谱植被指数与水稻叶面积指数相关性的研究

这篇关于GEE19:基于Landsat8的常见的植被指数逐年获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235271

相关文章

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Android如何获取当前CPU频率和占用率

《Android如何获取当前CPU频率和占用率》最近在优化App的性能,需要获取当前CPU视频频率和占用率,所以本文小编就来和大家总结一下如何在Android中获取当前CPU频率和占用率吧... 最近在优化 App 的性能,需要获取当前 CPU视频频率和占用率,通过查询资料,大致思路如下:目前没有标准的

MySQL常见的存储引擎和区别说明

《MySQL常见的存储引擎和区别说明》MySQL支持多种存储引擎,如InnoDB、MyISAM、MEMORY、Archive、CSV和Blackhole,每种引擎有其特点和适用场景,选择存储引擎时需根... 目录mysql常见的存储引擎和区别说明1. InnoDB2. MyISAM3. MEMORY4. A

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误