计算机视觉智能中医(六):基于曲线拟合舌体胖瘦的自动分析

本文主要是介绍计算机视觉智能中医(六):基于曲线拟合舌体胖瘦的自动分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

返回至系列文章导航博客

文章目录

  • 1 简介
  • 2 原理讲解——多项式曲线拟合
    • 2.1 舌体曲线拟合参数与形状的关系
    • 2.2 胖瘦指数定义
  • 3 具体实现过程
  • 4 代码实现
    • 4.1 contour_to.py
    • 4.2 outline_cut.py
    • 4.3 linger.py
    • 4.4 调用总函数

在这里插入图片描述

1 简介

在中医智能舌诊项目中需要舌体胖瘦的自动分析
舌体胖瘦是中医诊断中重要的观察依据。胖大舌“舌色淡白,舌体胖嫩,比正常舌大而厚,甚至充满口腔”,主脾肾阳虚,气化失常,水湿内停。舌体比正常舌瘦小而薄,称为“瘦薄舌”,主气血两虚和阴血不足。中医一般通过与正常舌比较来判断舌的胖瘦。但由于年龄、性别、区域的差异,正常舌本身就没有一个大小标准,给舌体胖瘦的自动定量分析造成困难。并且由于用户上传的图像比例差异比较大,这使得舌形判断难上加难。

在进行舌体胖瘦判断应有两个前提:

(1)用户上传的舌象图片已经被分割完成;
在这里插入图片描述

(2)舌体处于“垂直状态”;
在这里插入图片描述
这两个步骤的处理方案已在之前的文章中有所介绍:
计算机视觉智能中医(三):基于Unet模型的舌头舌体图片分割
计算机视觉智能中医(四):舌象图片中舌体倾斜判别

下面我们来详细讲解如何让计算机智能判别用户上传的舌象胖瘦!

2 原理讲解——多项式曲线拟合

2.1 舌体曲线拟合参数与形状的关系

通过对舌体轮廓进行曲线拟合,可以用较少的参数表示舌体轮廓。对舌前部轮廓采用4次多项式拟合
在这里插入图片描述

发现曲线拟合参数与曲线形状的尖锐与圆钝有以下关系:
(1)由于舌体接近对称,因此奇次项系数一般相对较小,对舌体形状的影响较小,而常数项根本不影响曲线的形状。
(2)舌体的总体形状趋势取决于其最高项——四次项,在其他各项系数相同的情况下,四次项系数越大,曲线越尖锐;越小,曲线越圆钝。
(3)尖锐和圆钝的程度不但与四次项和二次项的符号关系有关,还与两个系数的绝对值关系有关。二次项与四次项系数绝对值之比越大,曲线的尖锐与圆钝越显著。
在这里插入图片描述

2.2 胖瘦指数定义

通过上述函数图像的特点总结胖瘦指数。
胖瘦指数与四次项系数绝对值成反比,并且与二次项系数和四次项系数的符号关系和绝对值之比有关。胖瘦指数越大,舌体越胖。根据胖瘦特征已知的舌图像样本确定分级标准,可以将舌体描述为“胖”、“不胖不瘦”、“瘦”3种类型。
在这里插入图片描述
其中a4为四次项系数,a2为二次项系数。

3 具体实现过程

首先是要将舌象图片进行舌体分割(参照计算机视觉智能中医(三):基于Unet模型的舌头舌体图片分割)
在这里插入图片描述

舌体胖瘦分析的主要的对象是中下舌位,上舌位会影响分析的准确性,因此取舌体轮廓标记点的下0.75舌位。示意图如下图所示:
在这里插入图片描述

对下0.75舌位标记像素点进行舌体轮廓的多项式曲线拟合。由于分析的是曲线的“胖瘦”,因此多项式曲线的奇数次项影响较小,且项数较大较好。权衡模型的运行效率,中e诊采用4次项多项式曲线拟合。进行多张图片拟合的确定系数(R-square=SSR/SST)为0.82~0.95,说明4次多项式曲线拟合效果较好。舌体轮廓4次多项式拟合示意图如下:
在这里插入图片描述
将得到4次多项式拟合曲线系数代入如下公式,计算胖瘦指数。通过胖瘦指数来判断用户舌体的胖瘦。
在这里插入图片描述
其中a4为四次项系数,a2为二次项系数。
胖瘦值数越大说明舌体越宽大,胖瘦指数越小说明舌体越瘦小;胖瘦指数位于4.3-7.8范围内是正常舌,小于4.3是瘦小舌,大于7.8是肥大舌。
注:这里的数据可能准确度并不高,应当在大量样本数据验证后得出结论,需要后面继续验证!

4 代码实现

注:此后的代码是在已经分割好舌象以及舌体倾斜判断后,其中代码参照前文!

4.1 contour_to.py

from PIL import Image
import numpy as npdef contour_to(in_path=r"result\blend.png", out_path=r"result\inline.png"):"""将分隔好的图像数据进行描点in_path为绿底+原图图片put_path为黑底+白点图片返回对称轴坐标以及轮廓坐标"""img_before = Image.open(in_path)img_before_array = np.array(img_before)  #把图像转成数组格式img = np.asarray(image)shape_before = img_before_array.shapeheight = shape_before[0]width = shape_before[1]dst = np.zeros((height,width,3))wire = []axle_wire = []outcome_wire = []for h in range(0,height):lis = []h_all = 0w_all = 0for w in range (0,width-1):(b1,g1,r1) = img_before_array[h,w](b2,g2,r2) = img_before_array[h,w+1]if (b1, g1, r1) == (1,204,182) and (b2,g2,r2) != (1,204,182): dst[h, w] = (255,255,255)lis.append((h,w))outcome_wire.append((h,w))elif (b1, g1, r1) != (1,204,182) and (b2,g2,r2) == (1,204,182):dst[h, w+1] = (255,255,255)lis.append((h,w+1))outcome_wire.append((h,w+1))else:passif len(lis) == 0:passelse:for i in lis:h_all += i[0]w_all += i[1]h_avg = h_all//len(lis)w_avg = w_all//len(lis)dst[h_avg, w_avg] = (255,255,255)axle_wire.append((h_avg, w_avg))img2 = Image.fromarray(np.uint8(dst))img2.save(out_path,"png")wire.append(axle_wire)wire.append(outcome_wire)return wire

4.2 outline_cut.py

import numpy as np 
from PIL import Imagedef outline_cut(outcome_wire):"""截取轮廓下1/4像素点"""save = outcome_wirepool = []for i in outcome_wire:pool.append(i[0])pool.sort()judge = pool[int(1 + (float(len(pool)) - 1) * 1 / 4)]del_data = 0for i in range(len(outcome_wire)):if outcome_wire[i][0] < judge:del_data = ielse:passdel save[0:del_data]height = 256width = 256dst = np.zeros((height,width,3))for i in outcome_wire:h = i[0]w = i[1]dst[h,w] = (255,255,255)img2 = Image.fromarray(np.uint8(dst))img2.save(r"result\0.5cuted.png","png")return save

4.3 linger.py

import matplotlib.pyplot as plt
import numpy as np
from sklearn import  linear_model
#导入线性模型和多项式特征构造模块
from sklearn.preprocessing import  PolynomialFeaturesdef linger(wire):a1, a2 = zip(*wire)x = list(a2)y = list(map(lambda i: i * -1, a1))datasets_X = xdatasets_Y = y#求得datasets_X的长度,即为数据的总数。length =len(datasets_X)#将datasets_X转化为数组, 并变为二维,以符合线性回 归拟合函数输入参数要求datasets_X= np.array(datasets_X).reshape([length,1])#将datasets_Y转化为数组datasets_Y=np.array(datasets_Y)minX =min(datasets_X)maxX =max(datasets_X)#以数据datasets_X的最大值和最小值为范围,建立等差数列,方便后续画图。X=np.arange(minX,maxX).reshape([-1,1])#degree=4表示建立datasets_X的四次多项式特征X_poly。poly_reg =PolynomialFeatures(degree=4)X_ploy =poly_reg.fit_transform(datasets_X)lin_reg_2=linear_model.LinearRegression()lin_reg_2.fit(X_ploy,datasets_Y)#查看回归方程系数#print('Cofficients:',lin_reg_2.coef_)#查看回归方程截距#print('intercept',lin_reg_2.intercept_)plt.scatter(datasets_X,datasets_Y,color='red')plt.plot(X,lin_reg_2.predict(poly_reg.fit_transform(X)),color='blue')plt.xlabel('x')plt.ylabel('y')plt.show()return lin_reg_2.coef_

4.4 调用总函数

coefficient = linger.linger(contour_to.outline_cut(contour_to()[1]))
print(coefficient)

后根据coefficient中的多项式系数代入如下公式判断舌体胖瘦:
在这里插入图片描述

舌体判别算法至此结束

在这里插入图片描述
总的来讲就是:
step1:舌象图片自适应调节
step2:舌体分割
step3:舌体倾斜判断
step4:曲线拟合判断舌形

在这里插入图片描述

这篇关于计算机视觉智能中医(六):基于曲线拟合舌体胖瘦的自动分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234576

相关文章

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

IDEA如何让控制台自动换行

《IDEA如何让控制台自动换行》本文介绍了如何在IDEA中设置控制台自动换行,具体步骤为:File-Settings-Editor-General-Console,然后勾选Usesoftwrapsin... 目录IDEA如何让控制台自http://www.chinasem.cn动换行操作流http://www

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制