python处理数据地图投影有白线

2023-10-18 17:50

本文主要是介绍python处理数据地图投影有白线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       最近课程的老师让介绍一下自己用过的资料,我寻思着在最后加一张用资料画的图,然后就发现了这个问题(以前怎么没发现?疑惑.jpg)

简单的画了一个高度场(500hPa)叠加温度场的图(NCEP的再分析资料)

 代码如下:

import xarray as xr
import matplotlib.pyplot as plt#绘图
import cartopy.crs as ccrs#投影
import numpy as np
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter#经纬度
f1 = xr.open_dataset('C:/Users/24448/Desktop/air.1952.nc')
f2 = xr.open_dataset('C:/Users/24448/Desktop/hgt.1952.nc')
fig = plt.figure(figsize=(10,6),dpi=500)
crs = ccrs.PlateCarree(180)
ax1 = fig.add_subplot(1,1,1,projection=crs)
lon = f1.lon
lat = f1.lat
air = f1.air.loc['1952-01-01',500,:,:]-273.15
hgt = f2.hgt.loc['1952-01-01',500,:,:]/10
cf = ax1.contourf(lon,lat,air,levels=np.arange(-50,1,5),
                  cmap=plt.cm.RdBu_r,transform=ccrs.PlateCarree())

cycle_hgt, cycle_lon = add_cyclic_point(hgt, coord=lon)
cs = ax1.contour(cycle_lon,lat,cycle_hgt,colors='k',linewidth=0.3)
ax1.clabel(cs,fontsize=10)

ax1.set_xticks(np.arange(0,358,60),crs=ccrs.PlateCarree())
ax1.set_yticks([-90,-60,-30,0,30,60,90],crs=ccrs.PlateCarree())
ax1.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label =False))
ax1.yaxis.set_major_formatter(LatitudeFormatter())

ax1.tick_params(which='major',direction='out',length=10,width=0.99,pad=1,labelsize=16,
                        bottom=True, left=True, right=False,top=False)
ax1.set_title('temperature_height',loc='left',pad=15,fontsize=20)#标题
ax1.set_title('1952-01-01_500hPa',loc='right',pad=15,fontsize=20)
ax1.set_xlabel('Longtitude',fontsize=15)#x轴标签
ax1.set_ylabel('Latitude',fontsize=15)#y轴标签
ax1.coastlines(facecolor='None', edgecolor='0.1', linewidth=0.5)

ax=fig.add_axes([0.93,0.18,0.03,0.65])  # 0.25控制距离左边的距离,0.01控制距离下面的距离,最后两位控制color的长度和厚度
cb=fig.colorbar(cf,cax=ax,shrink=0.9,pad=0.04,aspect=15,orientation='vertical')
cb.ax.tick_params(labelsize=15)
plt.show()
#fig.savefig('c:/Users/24448/Desktop/haiqi.png',format='png')
可以发现,填色图一切正常,但是等值线图180°处有一条空缺,找到了一些解决办法,有点半懂不懂,最后在摸鱼大佬的B站视频上找到了解决办法,摸鱼大佬牛逼!!(呐喊.jpg)  

解决方法是导入cartopy中的一个函数,然后在画等值线之前使用这个函数,如下:

from cartopy.util import add_cyclic_point

完整代码如下:

import xarray as xr
import matplotlib.pyplot as plt#绘图
import cartopy.crs as ccrs#投影
import numpy as np
from cartopy.util import add_cyclic_point#去除投影中间白线
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter#经纬度
f1 = xr.open_dataset('C:/Users/24448/Desktop/air.1952.nc')
f2 = xr.open_dataset('C:/Users/24448/Desktop/hgt.1952.nc')
fig = plt.figure(figsize=(10,6),dpi=500)
crs = ccrs.PlateCarree(180)
ax1 = fig.add_subplot(1,1,1,projection=crs)
lon = f1.lon
lat = f1.lat
air = f1.air.loc['1952-01-01',500,:,:]-273.15
hgt = f2.hgt.loc['1952-01-01',500,:,:]/10
cf = ax1.contourf(lon,lat,air,levels=np.arange(-50,1,5),
                  cmap=plt.cm.RdBu_r,transform=ccrs.PlateCarree())

cycle_hgt, cycle_lon = add_cyclic_point(hgt, coord=lon)
cs = ax1.contour(cycle_lon,lat,cycle_hgt,colors='k',linewidth=0.3)
ax1.clabel(cs,fontsize=10)

ax1.set_xticks(np.arange(0,358,60),crs=ccrs.PlateCarree())
ax1.set_yticks([-90,-60,-30,0,30,60,90],crs=ccrs.PlateCarree())
ax1.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label =False))
ax1.yaxis.set_major_formatter(LatitudeFormatter())

ax1.tick_params(which='major',direction='out',length=10,width=0.99,pad=1,labelsize=16,
                        bottom=True, left=True, right=False,top=False)
ax1.set_title('temperature_height',loc='left',pad=15,fontsize=20)#标题
ax1.set_title('1952-01-01_500hPa',loc='right',pad=15,fontsize=20)
ax1.set_xlabel('Longtitude',fontsize=15)#x轴标签
ax1.set_ylabel('Latitude',fontsize=15)#y轴标签
ax1.coastlines(facecolor='None', edgecolor='0.1', linewidth=0.5)

ax=fig.add_axes([0.93,0.18,0.03,0.65])  # 0.25控制距离左边的距离,0.01控制距离下面的距离,最后两位控制color的长度和厚度
cb=fig.colorbar(cf,cax=ax,shrink=0.9,pad=0.04,aspect=15,orientation='vertical')
cb.ax.tick_params(labelsize=15)
plt.show()
#fig.savefig('c:/Users/24448/Desktop/haiqi.png',format='png')

结果如图:

 现在就一切正常了。

若文章有问题,还望不吝赐教!

ps:气象小白,python小白,刚刚读研。愿诸君前程似锦,你我共勉!

这篇关于python处理数据地图投影有白线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234197

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python