本文主要是介绍c++中计算2得n次方_「专题」解析一元一次方程的知识点以及实际应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
解方程的内容大家基本从小学就开始学习,小学主要是求解,而中学阶段主要学习根据条件列方程并求解。因此,涉及一元一次方程的应用题,可以说是中学阶段学习方程问题的第一个难点。下面让我们先来解决初中可能遗留的第一个问题——一元一次方程。
什么是一元一次方程
我们将含有未知数的等式就叫做方程,那么什么是一元一次方程呢?只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0)。
一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0。
如何解一元一次方程
01
解方程的一般步骤
(1)去分母:方程两边同乘各分母的最小公倍数
(2)去括号:按去括号法则和分配律
(3)移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号
(4)合并:把方程化成ax = b (a≠0)形式
(5)系数化为1:在方程两边都除以未知数的系数a,得到方程的解
02
方程的解:
使方程中等号左右两边相等的未知数的值,叫做方程的解。
注意:方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
实际上,解一元一次方程就是在运用等式的性质进行求解。
● 等式的性质
(1)等式两边都加上(或减去)同个数(或式子),等式仍然成立。
用式子形式表示为:如果a=b,那么a±c=b±c
(2)等式两边乘同一个数,或除以同一个不为0的数,等式仍然成立。
用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c
(3)等式两边同时乘方(或开方),等式仍然成立。
03
方程的解的检验方法:
首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等,从而得出结论。
对初学的同学来讲,解一元一次方程的方法很容易掌握,但类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。
因此,在学习时,一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。
如何利用一元一次方程解应用题
一元一次方程的应用题主要是从实际问题中寻找相等关系,分析实际问题中的已知量和未知量,找出相等关系,列出方程,使同学们逐步建立列方程解决实际问题的思想方法。基本步骤
01
基本步骤:
02
设未知数的方法:
(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况。
(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用。
(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去。
(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然。
注意:
◆ 初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。
◆ 设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里尤其需要注意这个问题。
应用题常见类型
学习中,部分同学很容易忽视对一元一次方程的联系,实际上该方程牵涉到许多的实际问题,而与实际问题的结合正是大部分同学的失分点。
工程问题:
当题目中未给出工作总量时,设工作总量为单位1,即完成某项任务的各工作量的和=总工作量=1。
工作总量=工作时间×工作效率
各部分工作量之和=1
行程问题
涉及行程问题,我们经常采用“画图分析法”,利用图形分析行程问题是数形结合思想在数学中的体现,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
路程=速度×时间
相遇路程=速度和×相遇时间
追及路程=速度差×追及时间
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度水流速度=×(顺流速度-逆流速度)
火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:
车速×过桥时间=车长+桥长。
利润问题:
在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,我们必须了解这些概念的实际应用,比如:商品打几折出售,就是按原标价的百分之几十出售,商品打8折出售,即按原标价的80%出售。在了解这些基本概念的基础上,还必须掌握以下几个等量关系:
利润=售价-进价
利润=进价×利润率
实际售价=标价×打折率
调配问题:
调配与比例问题在日常生活中十分常见,比如:合理选取方案,安排工人生产,按比例选取工程材料,调剂人数或货物等。
调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
对于一元一次方程,从操作步骤上来讲,大部分同学都能够明晰,但是进行每个步骤是需要注意的细节问题,是思维瑕点,需要反复关注易错点,并落实理解记忆,才能提高方程的正确率。此外,针对,一元一次方程的应用题,必须要明晰各类题型之间涉及的关系公式,否则就是“求助无门”!
看完后不要忘记结合“每日一题”进行练习哟!
这篇关于c++中计算2得n次方_「专题」解析一元一次方程的知识点以及实际应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!