用深度学习技术FCN自动生成口红

2023-10-18 11:59

本文主要是介绍用深度学习技术FCN自动生成口红,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 这个是什么?

       基于全卷积神经网络(FCN)的自动生成口红Python程序。

1180694-20190907093739352-1030044718.jpg
图1 FCN生成口红的效果(注:此两张人脸图来自人脸公开数据库LFW)

2 怎么使用了?

       首先能从这个Github (https://github.com/Kalafinaian/ai_lips_makeup) 中下载这个python项目。下载解压后你得到这样一个程序。

1180694-20190907093800381-1199517162.jpg
图2 口红Python程序

       本项目的运行环境为Python3.6,需要的深度学习包tensorflow , 脸部图形处理包dlib,通用计算机视觉处理包cv2,以上三个python软件包都可以通过如下pip命令按照

       pip install opencv-python
       pip instll dlib=19.16.0
       pip install tensorflow=1.12.0

       安装好必要的python包后,就直奔主题说如何给一张人脸图加上口红,用pycharm打开项目运行main_predict.py。按照提示选择口红效果,再输入人脸图片的地址,最后加上口红的照片会在test_out文件夹中存储。

1180694-20190907093818599-1512370747.jpg
图3 FCN口红运行演示

       同理类似处理test_in文件夹下的002.jpg,那么在test_out文件夹下可以获得加上亮面口红的人脸照片了。

1180694-20190907093835142-1210689993.jpg
图4 FCN口红的预测输出

3 程序的原理

       这个基于全卷积神经网络的FCN口红的工作原理如下 (釉面口红为例)
       (1) 训练集输入为没有口红的人脸,训练集输出为有釉面口红人脸,共170
个训练集。(因版权原因本程序不提供完整人脸,只提供口红照片)

1180694-20190907093856372-755682918.jpg
图5 没有口红的人脸
1180694-20190907093911351-1758318314.jpg
图6 有釉面口红的人脸(诚如所见,训练集口红都是人工PS的?)

       (2)使用dlib自带的模型提取出人脸嘴唇,将所有嘴唇图片resize到90×30的大小那么训练的输入和输出

1180694-20190907093935462-871547840.jpg
图7 训练集原始嘴唇
1180694-20190907093951851-1681911056.jpg
图8 训练集对应釉面口红输出

       (3)构建一个三层全卷积神经网络
       (3.1)第一层输入为30×90×3 (RGB三通道)的多维数组,所以第一层卷积输入通道为3个,另定义输出通道为24个,采用elu激活函数,没有下采样
       (3.2)根据第一层输出通道可知第二层输入为30×90×24的多维数组,另定义第二层输出通道为45个,同样采用elu激活函数,没有下采样
       (3.3)根据第二层输出通道可知第三层输入为30×90×45的多维数组,另定义第二层输出通道为3个,同样采用elu激活函数,没有下采样
       (3.4)定义损失函数为均方差损失,即loss等于第三次输出和训练输出每个像素点差的平方求平均数。

       (4) 迭代训练100词,将模型参数保持为model文件夹中model_brightening
(详细过程可见代码)

       (5) 高兴的使用模型参数进行口红生成

4 延伸阅读(全卷积神经网络和ELU激活函数)

       简单来说FCN将传统CNN中的全连接层转化成一个个的卷积层(本文中程序连pooling也省略了)。在传统的CNN结构中,前N层是卷积层,倒数第二层是一个长度为4096的一维向量,倒数第一层是长度为1000的一维向量,对应1000个类别的概率。FCN将这3层表示为卷积层,卷积核的大小(通道数,宽,高)分别为(4096,1,1)、(4096,1,1)、(1000,1,1)。所有的层都是卷积层,故称为全卷积网络。简单来说FCN与CNN的区别在于FCN把CNN最后的全连接层换成卷积层,输出一张已经label好的图。

1180694-20190907094012350-80119309.jpg
图9 FCN演示图

       关于FCN具体只是可参见UC Berkeley的Jonathan Long等人提出了Fully Convolutional Networks (FCN)[1]。

       然后再介绍一下ELU激活函数[2],这个函数长这样的

\[f\left( x \right) = \left\{ \begin{array}{l} x\;\;\;\;\;\;\;\;\;\;\;\;\;\;x > 0 \\ \alpha \left( {{e^x} - 1} \right)\;\;\;x \le 0 \\ \end{array} \right.,\;f'\left( x \right) = \left\{ \begin{array}{l} 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x > 0 \\ f\left( x \right) + \alpha \;\;\;x \le 0 \\ \end{array} \right.\]

       在tensorflow中alpha默认取1(https://www.tensorflow.org/api_docs/
python/tf/nn/elu)。

1180694-20190907094035359-621039891.jpg
图10 ELU函数和其他几个激活函数的图像

       Elu函数可以加速训练并且可以提高分类的准确率。它有以下特征:
       (1) elu由于其正值特性,可以像relu,lrelu,prelu一样缓解梯度消失
       (2相比relu,elu存在负值,可以将激输出均值往0推近,输出均值接近0可以减少偏移效应进而使梯 度接近于自然梯度。
       (3) Lrelu和prelu虽然有负值存在,但是不能确保是一个噪声稳定的去激活状态。Elu在负值时是一个指数函数,对于输入特征只定性不定量

5 总结

       详细过程看代码,具体原理读论文。

推荐论文:

[1] Fully Convolutional Networks for Semantic Segmentation
(https://arxiv.org/abs/1411.4038)

[2] Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
(https://arxiv.org/abs/1511.07289v5)

推荐资源

http://vis-www.cs.umass.edu/lfw/
https://github.com/shelhamer/fcn.berkeleyvision.org

转载于:https://www.cnblogs.com/Kalafinaian/p/11479275.html

这篇关于用深度学习技术FCN自动生成口红的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232439

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

IDEA如何让控制台自动换行

《IDEA如何让控制台自动换行》本文介绍了如何在IDEA中设置控制台自动换行,具体步骤为:File-Settings-Editor-General-Console,然后勾选Usesoftwrapsin... 目录IDEA如何让控制台自http://www.chinasem.cn动换行操作流http://www

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用