蒙提霍尔的c语言程序,图解|什么是蒙提霍尔问题

2023-10-18 05:20

本文主要是介绍蒙提霍尔的c语言程序,图解|什么是蒙提霍尔问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原标题:图解|什么是蒙提霍尔问题

来源 | 后端技术指南针

如若转载请联系原公众号

1.写在前面

前几天和同事聊了个问题,觉得还蛮有趣,决定和大家分享一下。

Oh My God! 搞它搞它!

7c9ef4d9b04dee139eea172e82073c9e.png

2. 题目描述

我们的热心读者小明被选中参加一个抽奖游戏,游戏规则是这样的:

小明面前有ABC三扇相同的门,小明和观众无法知道ABC三扇门背后有什么。

ee044d2bf2590351b4b49dde1f031baa.png

ABC三扇门中只有一扇门背后有一辆汽车,其他两扇门背后都是一瓶矿泉水。

c5c6a4ff298890987c0ebb7b5a798344.png

小明需要在3扇门中选中一个并且不开启,接下来主持人从另外两扇门中选中一扇门并且开启。

c43a99cb62ba229937bde3a73bb9edac.png

小明选中了A门,主持人选中了B门,并且开启B门后是矿泉水。

a8775138ee27c773c1ebf67a512a6e64.png

这时主持人问小明,明哥你要不要从A门换选C门呢?

2ad13974781dd0acde7ed10850c3b302.png

大家都替小明思考一下,别瞎蒙,要有理有据,能不能提到这辆法拉利就在此一搏了!

3. 蒙提·霍尔问题

相信很多老铁知道这个问题,这就是有名的 蒙提霍尔问题(Monty Hall Problem),也称三门问题。

这是一个源自博弈论的数学游戏问题,出自美国的电视游戏节目Let's Make a Deal。

这里面有个非常重要的线索:主持人知道哪扇门后有汽车且会选中背后有水的那扇门,这也是争议的所在,相当于个隐含条件吧。

在维基百科对于Monty Hall问题的描述中,门的背后是山羊和汽车,本文替换成了矿泉水,但是数学原理是一样的,大白是想尽量排除干扰,避免读者钻牛角尖。

面对这个问题, 很多人认为换或者不换选中汽车的概率都是1/2,还有一部分人认为应该换了之后的概率更大是2/3。

319dd309461279b7990f0746533a91c1.png

4. 朴素分析

换或者不换,是个问题。

e0906794028314bcc6dda4b5525ea014.png

4.1 不换的1/2派

由于主持人已经帮小明淘汰了一个选项,剩下的就只有两个了。

很直观地感觉一下,A门和C门背后有汽车的概率都是1/2,这个结论也是符合大部分人直观第一感觉的答案,这也是大白的第一答案...害

ecb691e789231a06993a66aef17f9aa5.png

但是还有句话,真理往往掌握在少数人手中,所以这个直观答案并不一定正确呀!

4.2 调换的2/3派

调换派认为不换的话有车的概率就是最初的1/3,由于B和C总体的概率为2/3,且已经被排除了B,那么修改选择后,选C有车的概率就是2/3。

详细分析一下这几种可能:

A扇门背后有车,如果调换到C,那么一定没有车,这种场景的概率是1/3。

A扇门背后无车,如果调换到C,那么一定有车,这种场景的概率是2/3。

ab2329d25b801309d92da42faeadcba6.png

确实非常有道理,用一个低概率成功去换取一个高概率成功,太机智了!

4.3 分歧所在

在主持人没有开启B门之前,我们对选择A后有汽车的概率是1/3是毫无争议的。

但是当主持人开启B门之后,就出现了分歧, 那么不由得去想B门的开启是否影响了之前的选择A呢?

7fd01309f1a88512135ce92674267f63.png

5. 数学分析

没有数学分析,大家貌似说的都有道理, 所以必须亮出大神器-概率分析。

这几个概率论的术语,大家都是学过的,所以不必有什么数学恐惧。

1680d46323d594e57bfa6f33f3eb1a9d.png

5.1 独立事件的概率和条件概率

独立事件概率

我们设定事件a的概率为P(a),事件b的概率是P(b),且事件a和事件b是相互独立的。

则事件a和事件b同时发生的概率,满足如下公式:

P(ab)=P(ba)=P(a)P(b)

条件概率

条件概率是在某种条件下,某个事件发生的概率,展示了事件之间的内在联系和影响。

我们来看两种条件概率的简单表述。

事件a发生之后,事件b发生的概率,可以记做P(b|a),此时满足公式:

P(b|a)=P(ab)/P(a)

等价于 P(ab)=P(b|a)P(a)

事件b发生之后,事件a发生的概率,可以记做P(a|b),此时满足公式:

P(a|b)=P(ab)/P(b)

等价于 P(ab)=P(a|b)P(b)

综合这两种条件事件,可以得到公式:

P(ab)=P(b|a)P(a)=P(a|b)P(b)5.2 贝叶斯公式

我们综合计算得到一个公式:

P(b|a)P(a)=P(a|b)P(b)

这个公式做一个变形可以得到:

P(a|b)=P(b|a)P(a)/P(b)

没错,这就是大名鼎鼎的 贝叶斯公式。

5.3 先验概率和后验概率

在贝叶斯公式中,还隐含着一些术语,来看下百度百科对于其中的定义:

P(A)是A的先验概率或边缘概率,它不考虑任何B方面的因素。

P(A|B)是B发生后A的条件概率,由于得自B的取值被称作A的后验概率。

P(B|A)是A发生后B的条件概率,由于得自A的取值被称作B的后验概率。

P(B)是B的先验概率或边缘概率,称作标准化常量。

贝叶斯公式的意义非常重大,它揭示了条件事件概率的内在联系,某些样本信息的出现对先验概率的影响。

贝叶斯公式为我们利用搜集到的信息对原有判断进行修正提供了有效手段。

在很多领域都有非常深远的影响,正好用在我们今天的蒙提霍尔问题上,继续来分析。

6. 贝叶斯公式和蒙提霍尔问题

前面我们提到了, 症结在于主持人选择B门并开启后无车,这个事件对于已作出选择的参与者来说是否有影响呢?

后验概率是否产生了影响,我们来推导一下:

设定A、B、C门后有汽车分别记为事件a、b、c,则P(a)=P(b)=P(c)=1/3。

设定参与者选择了A门,由于主持人默认需要选择没有汽车的门,因此参与者的选择影响了主持人的选择。

设定主持人选择了B门且没有汽车,记为事件d,则P(d|a)=1/2,P(d|b)=0,P(d|c)=1。

在主持人选择B门无汽车后,参与者选择A门有车的概率为P(a|d),即事件d发生后事件a的概率,由贝叶斯公式得:

P(a|d)=P(d|a)P(a)/P(d)

通过前面的分析,我们只需要求P(d|a)、P(a)、P(d)三个元素即可。

P(d|a)表示A门有汽车的情况下,主持人选择B门的概率,其为1/2;

P(a)表示A门有汽车的概率,其为1/3;

P(d)可以从全概率公式求得,其为1/2:

P(d)=P(d|a)P(a)+P(d|b)P(b)+P(d|c)P(c)

P(d)=1/2*1/3+0*1/3+1*1/3=1/2

综上得到:P(a|d)=1/2*1/3*2=1/3

在主持人选择B门开启后无汽车的情况下,参与者选A门有汽车的概率P(a|d)=1/3,因此后验概率并没有发生变化,并不是直观的1/2,而仍然是1/3。

因此如果做调换,那么相当于参与者选择了C门,计算过程类似,概率为2/3:

P(c|d)=P(d|c)P(c)/P(d)

7.蒙提霍尔问题的思考

想这个问题的时候,总觉得有漏洞,或者说必须在某些条条框框才能正常推演。

比如说假如主持人并不知道哪扇门后有汽车,他也是随机选择的。

比如说数据规模不一样,9扇门,主持人帮你否定7个,显然要换,正是因为数据规模很小才带来了和直觉相悖的感觉。

最后用Horst Hohberger的一段话概括,蒙提霍尔问题:

If you change, you win when your original choice was wrong;

if you don't change, you win when your original choice was right.

如果你想赢得汽车,两种情况的概率:

不换情况下必须是最初选择是对的才会赢取法拉利,概率1/3

调换情况下必须是最初选择是错的才会赢取法拉利,概率2/3

网上有一些大佬,写代码模拟这个独立重复实验,得到的结果也是一样的。

今天先到这里,感谢各位老铁的倾情安排!

点击图片参与活动免费包邮送书

● 图解+代码 | 你被限流了吗?返回搜狐,查看更多

责任编辑:

这篇关于蒙提霍尔的c语言程序,图解|什么是蒙提霍尔问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230460

相关文章

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3