BEVFusion代码复现实践

2023-10-17 15:40
文章标签 代码 实践 复现 bevfusion

本文主要是介绍BEVFusion代码复现实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bevfusion代码复现环境部署

  • mit版本代码github地址
  • 本人代码仓库地址 ,求个☆^_^
  • Fast-BEV代码复现实践
  • BEVFustion-TensorRT部署
  • BEV各算法环境部署实战汇总
  • 如果觉得本文章可以,一键三连支持一波,^_^
  • 部署有问题的小伙伴欢迎留言和加Q裙-472648720

1 环境安装

  • python-3.8, torch-1.10.0, cuda-11.3
  • 不要问其他版本能不能通,小白和不想折腾环境的童鞋直接抄作业
  1. 虚拟环境
  • conda(含显卡驱动,cuda安装)构建虚拟环境参考链接
# 1 创建虚拟环境
conda create -n bevfusion python=3.8
# 2 激活虚拟环境
conda activate bevfusion
  • 后面python包都是安装在虚拟环境中
  1. torch安装

cuda与torch版本查询 我用的torch-1.10.0

pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
  1. 其他依赖安装
  • libgllibopenmpi-dev
# 安装mpi4py时依赖openmpi,不然会报错fatal error: mpi.h
sudo apt-get install wget libgl1-mesa-glx libglib2.0-0 openmpi-bin openmpi-common libopenmpi-dev libgtk2.0-dev git -y
  • openlib相关包
pip install Pillow==8.4.0 tqdm torchpack mmcv-full==1.4.0 mmdet==2.20.0 nuscenes-devkit mpi4py==3.0.3 numba==0.48.0 setuptools==56.1.0 ninja==1.11.1 numpy==1.23.4 opencv-python==4.8.0.74 opencv-python-headless==4.8.0.74 yapf==0.40.1

安装mmcv-full时,可能需要时间比较长,只要电脑没卡住,都是正常的

  1. 根据setup.py进行配置, 这里会安装mmdet3d

下载源码运行setup.py,建议直接拉取本人的仓库代码,以免作者版本更新,遇到新的问题。

  • 拉取源码
# 1 拉取官方源码
git clone https://github.com/mit-han-lab/bevfusion.git
# 本人仓库拉取
git clone https://gitee.com/linClubs/bevfusion.git
  • 运行setup.py
pip install -v -e .# -v 调试信息
# -e 可编辑模型
# . 寻找当前目录下的setup.py
  • 运行完,显示如下:
    mmdet3d版本0.0.0,不影响代码的运行
Successfully installed mmdet3d-0.0.0
  1. 查看环境
  • 查看torch,cuda相关包版本号
pip list | grep torch
  • 查看mmopenlab相关包版本号
pip list | grep mm

2 报错修改汇总

  1. mmdet3d/ops/spconv/src/indice_cuda.cu文件里面所有的4096改为256

  2. 算力更改:setup.py文件中第22行左右,只保留一行-gencode=arch=compute_86,code=sm_86"

  • 参数86就是自己显卡的算力根据实际修改, 显卡算力查询
  1. 运行报错
  • 1 错误1 运行tools/visualize.py报错No module named 'torchpack.utils.tqdm
    修改:把tools/visualize.py文件中from torchpack.utils.tqdm import tqdm改成from tqdm import tqdm,如下:
# from torchpack.utils.tqdm import tqdm
from tqdm import tqdm
  • 2 错误2
    mmdet3d/models/vtransforms/base.py中2个forward函数的参数都加上metas变量,加到**kwargs前即可,如下所示
def forward(
...
metas,
**kwargs,
):
#  3 错误3 
#  return _bootstrap._gcd_import(name[level:], package, level)
# ImportError: libGL.so.1: cannot open shared object file: No such file or directory
修改:安装opencv-python的依赖
sudo apt install libgl1-mesa-glx libglib2.0-0# 4 错误4:#raise AttributeError("module {!r} has no attribute "
#AttributeError: module 'numpy' has no attribute 'long'
修改:更新numpy的版本pip install numpy==1.23.4# 5 错误5:#text, _ = FormatCode(text, style_config=yapf_style, verify=True)
#TypeError: FormatCode() got an unexpected keyword argument 'verify'
修改:更新yapf版本
pip install yapf==0.40.1# 6 错误6:
# AttributeError: module 'distutils' has no attribute 'version'
修改:更新setuptools版本
pip install setuptools==58.4.0
  1. distributed分布式训练
  • 如果需要多卡训练,请把distributed参数设置为True,直接vs-code全局搜索找到distributed

3 运行

3.1 准备数据集

  • nuscenes-mini数据集得加上--version v1.0-mini参数,下以nuscenes-mini作代码验证

具体下载细节参考Fast-BEV代码复现实践的第2小节数据集准备内容

下载后数据集后运行create_data.py生成训练数据,

create_data.py只运行下面代码第一行nuscenes-mini即可

# nuscenes-mini
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --version v1.0-mini# nuscenes
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes

原始总共4个文件夹 maps,samples,sweeps,v1.0-mini,运行create_data.py后生成3pkl文件和一个nuscenes_gt_database文件夹,目录结构如下:

data└──nuscenes├── maps├── nuscenes_dbinfos_train.pkl├── nuscenes_gt_database├── nuscenes_infos_train.pkl├── nuscenes_infos_val.pkl├── samples├── sweeps└── v1.0-mini

3.2 预训练权重

./tools/download_pretrained.sh
  • 运行后会在cd pretrained中生成7个权重文件,具体信息可以阅读./tools/download_pretrained.sh文件内容
  • 使用swint-nuimages-pretrained.pth这个预训练权重进行训练
  • 如果运行上./tools/download_pretrained.sh下载失败,可以直接在github的readme上点击下载地址
  • 加文章末尾群号, 群文件也有swint-nuimages-pretrained.pth文件

3.3 训练

根据显卡性能修改参数:

  • 只有一张显卡: -np 1
  • configs/default.yaml中修改epoch:max_epochs: 2(本人只跑2个周期测试)
  • configs/nuscenes/det/centerhead/lssfpn/camera/256x704/swint/default.yaml文件中,测试环境是否正确时,建议设置samples_per_gpu: 1,,后期训练根据硬件配置修改,如果使用其他配置文件,修改同理。
  • 测试环境时,configs/nuscenes/default.yamlworkers_per_gpu 参数修改为0:workers_per_gpu: 0samples_per_gpu: 1
torchpack dist-run -np 1 python tools/train.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/swint/default.yaml --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth --run-dir train_result
  • 训练完成后会在train_result目录下生成下面文件 结构如下:
└── train_result├── 20230809_203249.log├── 20230809_203249.log.json├── configs.yaml├── epoch_2.pth├── latest.pth -> epoch_2.pth├── logging└── tf_logs
  • configs.yamllatest.pth在test和可视化需要使用

    3.4 测试

# pretrained
torchpack dist-run -np 1 python tools/test.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/swint/default.yaml pretrained/swint-nuimages-pretrained.pth --eval bbox --out box.pkl# Custom
torchpack dist-run -np 1 python tools/test.py train_result/configs.yaml train_result/latest.pth --eval bbox --out box.pkl

运行后会生成box.pkl文档

3.5 visualize

  • 首先改错误1.2小节3.的2个错误
# Custom
torchpack dist-run -np 1 python tools/visualize.py train_result/configs.yaml --mode pred --checkpoint train_result/latest.pth --bbox-score 0.2 --out-dir vis_result# gt
torchpack dist-run -np 1 python tools/visualize.py train_result/configs.yaml --mode gt --checkpoint train_result/latest.pth --bbox-score 0.5 --out-dir vis_result# pretrained
torchpack dist-run -np 1 python tools/visualize.py train_result/configs.yaml --mode pred --checkpoint pretrained/swint-nuimages-pretrained.pth --bbox-score 0.2 --out-dir vis_result
  • 运行后会在vis_result下生成可视化结果,如下:
└── vis_result├── camera-0├── camera-1├── camera-2├── camera-3├── camera-4├── camera-5└── lidar

运行--mode gt模式,也就是标签数据可视化,自己训练权重效果比较差(原因:钞能力有限),可视化结果如下:
请添加图片描述

小伙伴们部署时遇到问题,欢迎各位小伙伴留言,欢迎进入bev交流抠抠裙472648720,大家一起学bev!
如果觉得文章可以,一键三连支持一波,瑞思拜^-^

这篇关于BEVFusion代码复现实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226377

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行