【ARM Coresight Debug 系列 -- Linux 断点 BRK 中断使用详细介绍】

2023-10-17 07:12

本文主要是介绍【ARM Coresight Debug 系列 -- Linux 断点 BRK 中断使用详细介绍】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.1 ARM BRK 指令
    • 1.2 BRK 立即数宏定义介绍
    • 1.3 断点异常处理流程
      • 1.3.1 el1_sync_handler
      • 1.3.2 el1_dbg 跟踪
    • 1.4 debug 异常处理函数注册
      • 1.4.1 brk 处理函数的注册

1.1 ARM BRK 指令

ARMv8 架构的 BRK 指令是用于生成一个软件断点的。当处理器执行到 BRK 指令时,会触发一个断点异常。
在这里插入图片描述

BRK 指令的格式如下:

BRK #<imm>

其中<imm>是一个16位的立即数,它可以在断点异常发生时将立即数保存到 ESR.ISS 域中,从可以用来区分不同目的的 BRK 断点指令。

下面是一个简单的例子:

MOV R0, #1 
BRK #0x1234 
MOV R0, #2

在这个例子中,当处理器执行到BRK #0x1234这条指令时,并且可以在ESR.ISS中看到BRK #0x1234这条指令的立即数0x1234

需要注意的是,BRK指令只能在ARMv8及之后的ARM架构中使用。在早期的ARM架构中,生成软件断点通常使用的是SWI或BKPT指令。

1.2 BRK 立即数宏定义介绍

上节内容介绍了 BRK 后面跟的立即数会在断点中断发生时,保存到ESR.ISS中,那么我们看下linux 中 BRK 后面的立即数宏定义种类有哪些并分别作用是什么?

ARM64中BRK 立即数的定义位于文件 linux/arch/arm64/include/asm/brk-imm.h 中:

/** #imm16 values used for BRK instruction generation* 0x004: for installing kprobes* 0x005: for installing uprobes* 0x006: for kprobe software single-step* Allowed values for kgdb are 0x400 - 0x7ff* 0x100: for triggering a fault on purpose (reserved)* 0x400: for dynamic BRK instruction* 0x401: for compile time BRK instruction* 0x800: kernel-mode BUG() and WARN() traps* 0x9xx: tag-based KASAN trap (allowed values 0x900 - 0x9ff)*/
#define KPROBES_BRK_IMM                 0x004
#define UPROBES_BRK_IMM                 0x005
#define KPROBES_BRK_SS_IMM              0x006
#define FAULT_BRK_IMM                   0x100
#define KGDB_DYN_DBG_BRK_IMM            0x400
#define KGDB_COMPILED_DBG_BRK_IMM       0x401
#define BUG_BRK_IMM                     0x800
#define KASAN_BRK_IMM                   0x900
#define KASAN_BRK_MASK                  0x0ff
  • KPROBES_BRK_IMM:这是用于 Kprobes 的BRK指令的立即数值。Kprobes是Linux内核中的一个动态追踪工具,它允许你在运行时插入断点到内核代码中;

  • UPROBES_BRK_IMM :这是用于Uprobes的BRK指令的立即数值。Uprobes是Linux内核中的一个动态追踪工具,它允许你在运行时插入断点到用户空间程序中;

  • KPROBES_BRK_SS_IMM:这是用于Kprobes的单步执行模式的BRK指令的立即数值;

  • FAULT_BRK_IMM :这是用于处理页故障的BRK指令的立即数值;

  • KGDB_DYN_DBG_BRK_IMM:这是用于KGDB(内核调试器)的动态调试的BRK指令的立即数值;

  • BUG_BRK_IMM:这是用于BUG_ON宏的BRK指令的立即数值;BUG_ON是Linux内核中的一个宏,用于在满足某个条件时生成一个故障;

  • KASAN_BRK_IMM:这是用于KASAN(内核地址无效访问检测器)的BRK指令的立即数值。

1.3 断点异常处理流程

断点异常属于同步异常,所以我们需要从同步异常开始,ARMv8 的同步异常处理函数位于汇编文件linux/arch/arm64/kernel/entry.S中,定义如下:

/** EL1 mode handlers.*/.align  6
SYM_CODE_START_LOCAL_NOALIGN(el1_sync)kernel_entry 1mov     x0, spbl      el1_sync_handlerkernel_exit 1
SYM_CODE_END(el1_sync)

从上面汇编代码可以看到将栈指针的值SP赋值给X0,然后跳转到函数el1_sync_handler中,接下来继续跟踪该函数。

1.3.1 el1_sync_handler

el1_sync_handler 函数的定义位于linux/arch/arm64/kernel/entry-common.c 中:

asmlinkage void noinstr el1_sync_handler(struct pt_regs *regs)
{unsigned long esr = read_sysreg(esr_el1);switch (ESR_ELx_EC(esr)) {case ESR_ELx_EC_DABT_CUR:case ESR_ELx_EC_IABT_CUR:el1_abort(regs, esr);break;/** We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a* recursive exception when trying to push the initial pt_regs.*/case ESR_ELx_EC_PC_ALIGN:el1_pc(regs, esr);break;case ESR_ELx_EC_SYS64:case ESR_ELx_EC_UNKNOWN:el1_undef(regs);break;case ESR_ELx_EC_BREAKPT_CUR:case ESR_ELx_EC_SOFTSTP_CUR:case ESR_ELx_EC_WATCHPT_CUR:case ESR_ELx_EC_BRK64:el1_dbg(regs, esr);break;case ESR_ELx_EC_FPAC:el1_fpac(regs, esr);break;default:el1_inv(regs, esr);}
}

首先读取异常状态寄存器 ESR_EL1EC 域 判断当前异常类型,然后根据异常类型跳转到对应的处理函数,本篇文章组要介绍 ARMv8/ARMv9 debug 相关的内容,所先只关注 el1_dbg 这个异常处理函数。
在这里插入图片描述

当异常类型为 Breakpoint Instruction exceptions,Breakpoint exceptions,Watchpoint exceptions,Software Step exceptions 四种中的一种时就会跳转执行 el1_dbg 函数。

gcc 编译器在汇编过程中调用c语言函数时传递参数有两种方法:一种是通过堆栈,另一种是通过寄存器。缺省时采用寄存器,假如你要在你的汇编过程中调用 c 语言函数,并且想通过堆栈传递参数,你定义的 c 函数时要在函数前加上宏asmlinkage

  • Breakpoint Instruction exceptions: 执行 BRK 指令时触发的异常;
  • Breakpoint exceptions: 硬件断点异常,比如配置指令地址到硬件断点对应的寄存器中,当执行到该指令时就会触发硬件断点异常;
  • Watchpoint exceptions:观察点异常,主要用来监控变量的,比如,将变量的地址写入到对应的寄存器中,当访问这个变量是就会触发该异常;
  • Software Step exceptions:软件单步执行异常。

详细内容可以见 DDI0487_I_a_a-profile_architecture_reference_manual.pdf 中的 D2章节。

1.3.2 el1_dbg 跟踪

上节内容说到 当检查到异常类型为 debug 异常类型时就会执行el1_dbg 函数,该函数的实现如下:

static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
{unsigned long far = read_sysreg(far_el1);arm64_enter_el1_dbg(regs);do_debug_exception(far, esr, regs);arm64_exit_el1_dbg(regs);
}

该函数首先读取 far_el1 寄存器中产生导致异常发生的虚拟地址,然后再将虚拟地址,esr_el1的值,SP栈地址作为参数传给了 do_debug_exception 函数:

834 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
835                         struct pt_regs *regs)
836 {
837         const struct fault_info *inf = esr_to_debug_fault_info(esr);
838         unsigned long pc = instruction_pointer(regs);
839			
842			...
843         debug_exception_enter(regs);...
848         if (inf->fn(addr_if_watchpoint, esr, regs)) {
849                 arm64_notify_die(inf->name, regs,
850                                  inf->sig, inf->code, (void __user *)pc, esr);
851         }...
854 }
855 NOKPROBE_SYMBOL(do_debug_exception);

这里我们主要关注 837 行和 848行,这两行的作用是根据 ESR.EC 阈值判断当前异常类型,然后调佣该异常类型的处理函数。例如 BRK 软件断点异常的处理函数就是 linux/arch/arm64/kernel/debug-monitors.c中的函数 brk_handler。那么 brk_handler 异常的处理函数是如何注册的?

1.4 debug 异常处理函数注册

linux 对于类型相似的问题,比如许多类型相似 debug 异常,处理套路都是先定义一个全局的结构体数组(如 struct fault_info fault_info[], struct fault_info debug_fault_info[]),然后将异常的处理函数,异常类型,异常描述等信息填入结构体数组中:

struct fault_info {int     (*fn)(unsigned long addr, unsigned int esr,struct pt_regs *regs);int     sig;int     code;const char *name;
};/** __refdata because early_brk64 is __init, but the reference to it is* clobbered at arch_initcall time.* See traps.c and debug-monitors.c:debug_traps_init().*/
static struct fault_info __refdata debug_fault_info[] = {{ do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware breakpoint"   },{ do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware single-step"  },{ do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware watchpoint"   },{ do_bad,       SIGKILL,        SI_KERNEL,      "unknown 3"             },{ do_bad,       SIGTRAP,        TRAP_BRKPT,     "aarch32 BKPT"          },{ do_bad,       SIGKILL,        SI_KERNEL,      "aarch32 vector catch"  },{ early_brk64,  SIGTRAP,        TRAP_BRKPT,     "aarch64 BRK"           },{ do_bad,       SIGKILL,        SI_KERNEL,      "unknown 7"             },
};

在异常发生的时候只要需要索引值,就可以直接调用到对应的异常处理函数。对于数组debug_fault_info[] 索引值的获取是根据 ESR.EC的值计算来的:

static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
{return debug_fault_info + DBG_ESR_EVT(esr);
}#define DBG_ESR_EVT(x)          (((x) >> 27) & 0x7)

DBG_ESR_EVT 中右移27位是因为ESR_EL1bit26开始时EC域:
在这里插入图片描述

debug_fault_info表中的内容是默认的一些异常的处理函数,对于 debug 异常的处理函数注册还需要在代码中调用 linux/arch/arm64/mm/fault.c 中的注册函数hook_debug_fault_code来完成:

void __init hook_debug_fault_code(int nr,int (*fn)(unsigned long, unsigned int, struct pt_regs *),int sig, int code, const char *name)
{BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));debug_fault_info[nr].fn         = fn;debug_fault_info[nr].sig        = sig;debug_fault_info[nr].code       = code;debug_fault_info[nr].name       = name;
}

对于 BRK和单步执行的异常处理函数的注册是在linux/arch/arm64/kernel/debug-monitors.c中函数 debug_traps_init(void) 中完成的:

void __init debug_traps_init(void)
{hook_debug_fault_code(DBG_ESR_EVT_HWSS, single_step_handler, SIGTRAP,TRAP_TRACE, "single-step handler");hook_debug_fault_code(DBG_ESR_EVT_BRK, brk_handler, SIGTRAP,TRAP_BRKPT, "BRK handler");
}

对于 watchpoint 和 breakpoint 的异常处理函数的注册位于linux/arch/arm64/kernel/hw_breakpoint.c中的arch_hw_breakpoint_init(void)函数中:

/** One-time initialisation.*/
static int __init arch_hw_breakpoint_init(void)
{.../* Register debug fault handlers. */hook_debug_fault_code(DBG_ESR_EVT_HWBP, breakpoint_handler, SIGTRAP,TRAP_HWBKPT, "hw-breakpoint handler");hook_debug_fault_code(DBG_ESR_EVT_HWWP, watchpoint_handler, SIGTRAP,TRAP_HWBKPT, "hw-watchpoint handler");...
}
arch_initcall(arch_hw_breakpoint_init);

由于本篇文章主要介绍 BRK 指令异常,所以还需要继续跟踪器异常处理函数 brk_handler

326 static int brk_handler(unsigned long unused, unsigned int esr,
327                        struct pt_regs *regs)
328 {
329         if (call_break_hook(regs, esr) == DBG_HOOK_HANDLED)
330                 return 0;
331
332         if (user_mode(regs)) {
333                 send_user_sigtrap(TRAP_BRKPT);
334         } else {
335                 pr_warn("Unexpected kernel BRK exception at EL1\n");
336                 return -EFAULT;
337         }
338
339         return 0;
340 }
341 NOKPROBE_SYMBOL(brk_handler);

这里我们只关注第329行,它的作用是遍历注册到链表 kernel_break_hook 上的所有node, 比较 node 节点上的的立即数 imm 是否和 异常症状寄存器 ESR.ISS域中的值是否匹配, 如果匹配成功就会调用它的 handler。

static LIST_HEAD(kernel_break_hook);static int call_break_hook(struct pt_regs *regs, unsigned int esr)
{struct break_hook *hook;struct list_head *list;int (*fn)(struct pt_regs *regs, unsigned int esr) = NULL;list = user_mode(regs) ? &user_break_hook : &kernel_break_hook;/** Since brk exception disables interrupt, this function is* entirely not preemptible, and we can use rcu list safely here.*/list_for_each_entry_rcu(hook, list, node) {unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;if ((comment & ~hook->mask) == hook->imm) // 比较 BRK 后面的立即数fn = hook->fn;}return fn ? fn(regs, esr) : DBG_HOOK_ERROR;
}
NOKPROBE_SYMBOL(call_break_hook);

在这里插入图片描述

1.4.1 brk 处理函数的注册

上文提到了当 debug 异常发生后,会遍历 kernel_break_hook 上的所有 node,那么我们看下有哪些类型的事件注册到这个链表上呢?

register_kernel_break_hook(&kgdb_brkpt_hook);
register_kernel_break_hook(&kgdb_compiled_brkpt_hook);
register_kernel_break_hook(&kprobes_break_hook);
register_kernel_break_hook(&kprobes_break_ss_hook);
register_kernel_break_hook(&bug_break_hook);
register_kernel_break_hook(&fault_break_hook);
register_kernel_break_hook(&kasan_break_hook);

我们在看下这些 BRK事件对应的处理函数:

static struct break_hook kgdb_brkpt_hook = {.fn             = kgdb_brk_fn,.imm            = KGDB_DYN_DBG_BRK_IMM,
};
static struct break_hook kgdb_compiled_brkpt_hook = {.fn             = kgdb_compiled_brk_fn,.imm            = KGDB_COMPILED_DBG_BRK_IMM,
};
static struct break_hook kprobes_break_hook = {.imm = KPROBES_BRK_IMM,.fn = kprobe_breakpoint_handler,
};
static struct break_hook kprobes_break_ss_hook = {.imm = KPROBES_BRK_SS_IMM,.fn = kprobe_breakpoint_ss_handler,
};
static struct break_hook bug_break_hook = {.fn = bug_handler,.imm = BUG_BRK_IMM,
};
static struct break_hook fault_break_hook = {.fn = reserved_fault_handler,.imm = FAULT_BRK_IMM,
};
static struct break_hook kasan_break_hook = {.fn     = kasan_handler,.imm    = KASAN_BRK_IMM,.mask   = KASAN_BRK_MASK,
};

这里挑我们最常用到的处理函数 bug_handler 来介绍:

static int bug_handler(struct pt_regs *regs, unsigned int esr)
{switch (report_bug(regs->pc, regs)) {case BUG_TRAP_TYPE_BUG:die("Oops - BUG", regs, 0);break;case BUG_TRAP_TYPE_WARN:break;default:/* unknown/unrecognised bug trap type */return DBG_HOOK_ERROR;}/* If thread survives, skip over the BUG instruction and continue: */arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);return DBG_HOOK_HANDLED;
}

这里看到了我们经常遇到的Oops - BUG 了。

到目前为止介绍了整个 BRK 点断指令的处理流程与对应的异常处理函数注册流程,那么我们什么时候会用到 BRK 指令呢

在 linux中最常用的地方也就是 WARNBUG 这两个地方,这里以BUG为例进行介绍:

#define BUG() do {                                      \__BUG_FLAGS(0);                                 \unreachable();                                  \
} while (0)
#define __BUG_FLAGS(flags)                              \asm volatile (__stringify(ASM_BUG_FLAGS(flags)));
#define ASM_BUG()       ASM_BUG_FLAGS(0)
#define ASM_BUG_FLAGS(flags)                            \__BUG_ENTRY(flags)                              \brk     BUG_BRK_IMM

这篇关于【ARM Coresight Debug 系列 -- Linux 断点 BRK 中断使用详细介绍】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223804

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作