终于把大数据类产品全流程解释清楚了

2023-10-17 03:40

本文主要是介绍终于把大数据类产品全流程解释清楚了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你点开这文章,说明你清晰知道了数据才是一切的基础。人工智能、机器学习、大数据等应用的基础都是基于这样的一个流程,只是说运用领域不同,那么偏重点不同。

本文从数据采集到数据报告,详细说明了大数据运用过程与环节,为大家树立整体的意识。

数据采集(DAQ)

数据采集,又称数据获取,这就是数据的来源,一般数据是来源于自身业务开展中的信息,比如自己的数据库日志,交易流水等;另外就是除了自身数据外,可以使用第三方外部网络数据,比如爬虫抓取、引用外部API接口等。

数据预处理

不管是内部数据,还是外部数据,在实际场景中,结构化数据与非结构化数据都是大量存在的,并且直接面临的问题就是数据的多、杂、乱、错、冲突、歧义等情况。针对这些第一手数据进行整合优化,根据相应的目标清洗垃圾,统一格式规范,验证数据可靠性,筛选对应需求的数据。

终于把大数据类产品全流程解释清楚了

打开今日头条,查看更多精彩图片

目前存在四种主流的数据预处理技术

1、数据清理:

数据清理例程通过填写缺失值、光滑噪声数据、识别或者删除离群点并且解决不一致性来“清理数据”。

2、数据集成:

数据集成过程将来自多个数据源的数据集成到一起。

3、数据规约:

数据规约的目的是得到数据集的简化表示。数据规约包括维规约和数值规约。

4、数据变换:

据变换使用规范化、数据离散化和概念分层等方法使得数据的挖掘可以在多个抽象层上进行。数据变换操作是引导数据挖掘过程成功的附加预处理过程。

数据清理方法

缺失值

对于缺失值的处理一般是想法设法把它补上,或者干脆弃之不用。一般处理方法有:忽略元组、人工填写缺失值、使用一个全局变量填充缺失值、使用属性的中心度量填充缺失值、使用与给定元组属同一类的所有样本的属性均值或中位数、使用最可能的值填充缺失值

噪声数据

噪声是被测量变量的随机误差或方差。去除噪声、使数据“光滑”的技术:分箱、回归、离群点分析

数据清理的过程

数据清理过程主要包括数据预处理、确定清理方法、校验清理方法、执行清理工具和数据归档。数据清理的原理是通过分析“脏数据”产生的原因和存在形式,利用现有的技术手段和方法去清理“脏数据”,将“脏数据”转化为满足数据质量或应用要求的数据,从而提高数据集的数据质量。

数据清理的工具

采取高效的处理工具对数据进行处理。其中常用的工具有Excel、Access、SPSS Modeler、SAS、SPSS Statistics等。

数据分析

数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。

从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为以下4个层次:数据统计,OLAP,数据挖掘,大数据。

终于把大数据类产品全流程解释清楚了

数据统计

数据统计包括数据分析与结果分析,基本的分析方法有:

对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析对比从中挑选一定的模型。

从上面我们可以看出,统计学概念在数据分析中的作用:比如方差、标准差、相关系数、均方根误差等; 集中数据分析的基本方法:假设检验、回归分析、误差分析等; 统计图形分析:散点图、直方图等来探索数据中隐藏的规律; 数据库以及数据整理。

正如我上文所说,再数据分析的过程中,应用场景不同,侧重点不同,那么算法也不同,深度分析就会是数据挖掘;不需要人的参与,那么就变成了人工智能,在整个过程中,更多涉机器学习,算法训练等领域的内容,后续展开说明。

数据呈现

数据呈现,通过一些可视化图形或者报表形式进行展示,增强对分析结果的理解。可以以报表形式或PPT形式展示结果。针对结果进行数据再分析,使得整个业务环节形成闭环。

数据应用

举例:知识图谱

终于把大数据类产品全流程解释清楚了

如何成为一名出色的数据PD/PM/leader

①懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

②懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

③懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

④懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

⑤懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

这篇关于终于把大数据类产品全流程解释清楚了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222694

相关文章

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi