python 编程求矩阵运算及求多元一次方程

2023-10-17 00:50

本文主要是介绍python 编程求矩阵运算及求多元一次方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、python 矩阵操作
  • 二、python 矩阵乘法
  • 三、python 矩阵转置
  • 四、python 求方阵的迹
  • 五、python 方阵的行列式计算方法
  • 六、python 求逆矩阵 / 伴随矩阵
  • 七、python 解多元一次方程

本文内容:使用 jupyter 编写 python 代码对矩阵进行基本运算。

一、python 矩阵操作

  • 先引入 numpy ,以后的教程中,我们都引用 np 作为简写。
  • 使用 mat 函数创建一个 2×3 矩阵。
#引入numpy
import numpy as np
#使用mat函数创建一个2×3矩阵
a=np.mat([[1,2,3],[4,5,6]])
a

在这里插入图片描述

  • 使用 shape 可以获取矩阵的大小。
#使用shape可以获取矩阵的大小
a.shape

在这里插入图片描述

  • 使用下表读取矩阵中的元素
#使用下标读取矩阵中的元素
a.T

在这里插入图片描述

  • 进行行列转换。
#进行行列转换
a.transpose()a.T

在这里插入图片描述

  • 实际上官方文档建议我们使用二维数组代替矩阵来进行矩阵运算;因为二维数组用得较多,而且基本可取代矩阵。
#用二维数组代替矩阵
b=np.array([[1,2,3],[4,5,6]])
bb.T

在这里插入图片描述

  • 加减法也是一样的。
#加减法
a+ab+b

在这里插入图片描述

  • 当然列表是不能这么尽兴加减的。
#列表不能尽兴加减
c=[[1,2,3],[4,5,6]]
c+c

在这里插入图片描述

二、python 矩阵乘法

  • 使用二维数组创建两个矩阵 A 和 B。
#使用二维数组创建两个矩阵AB
A=np.array([[1,2,3],[4,5,6]])
B=A.TAB

在这里插入图片描述

  • 先来一个矩阵的数乘,其实是矩阵的每一个元素乘以该数。
#矩阵每个元素乘以该数
2*A2*B

在这里插入图片描述

  • dot 函数用于矩阵乘法,对于二维数组,它计算的是矩阵乘积,对于一维数组,它计算的是内积。
A*Bnp.dot(A,B)np.dot(B,A)

在这里插入图片描述

  • 再创建一个二维数组
#创建一个二维数组
C=np.array([[1,2],[1,3]])
C

在这里插入图片描述

  • 我们验证一个矩阵乘法的结合性:(AB)C=A(BC)。
#验证矩阵乘法的结合性 (AB)C=A(BC)
np.dot(np.dot(A,B),C)np.dot(A,np.dot(B,C))

在这里插入图片描述

  • 接着看一下对加法的分配性:(A+B)C=AC+BC、C(A+B)=CA+CB。
#验证加法的分配性 (A+B)C=AC+BC  C(A+B)=CA+CB
D=B-1
Dnp.dot(A,B+D)np.dot(A,B)+np.dot(A,D)

在这里插入图片描述

  • 数乘的结合性,也是一样的。
#验证数乘的结合性
2*(np.dot(A,B))np.dot(A,2*B)np.dot(2*A,B)np.dot(A,2*B)

在这里插入图片描述

  • 接着我们用到一个新知识,使用 eye 创建一个单位矩阵。
#使用 eye 创建一个单位矩阵
I=np.eye(3)
I

在这里插入图片描述

  • 一个矩阵 A 乘以一个单位矩阵,还是它本身。
#矩阵 A 乘以一个单位矩阵
np.dot(A,I)

在这里插入图片描述

三、python 矩阵转置

  • 先创建一个矩阵 A(前面已经创建过了)。
A

在这里插入图片描述

  • 我们使用属性 T 来得到矩阵 A 的转置矩阵
A.T

在这里插入图片描述

  • 验证第一个性质:(A’)’=A。
A.T.T

在这里插入图片描述

  • 创建两个尺寸相同的矩阵(前面已经创建过了)。
BD

在这里插入图片描述

  • 验证矩阵转置的第二个性质:(A±B)’=A’±B’。
(B+D).TB.T+D.T

在这里插入图片描述

  • 验证矩阵转置的第三个性质:(KA)’=KA’
10*A.T(10*A).T

在这里插入图片描述

  • 验证矩阵转置的第四个性质:(A×B)’=B’×A’
np.dot(A.T,B.T)np.dot(B.T,A.T)

在这里插入图片描述

四、python 求方阵的迹

  • 方阵的迹就是主对角元素之和。
  • 创建一个方阵(行数等于列数的矩阵)。
E=np.array([[1,2,3],[4,5,6],[7,8,9]])
E

在这里插入图片描述

  • 用 trace 计算方阵的迹。
np.trace(E)

在这里插入图片描述

  • 再创建一个方阵 F。
F=E-2
F

在这里插入图片描述

  • 验证一下方阵的迹等于方阵的转置的迹。
np.trace(E)np.trace(E.T)

在这里插入图片描述

  • 验证一下方阵的乘积的迹。
np.trace(np.dot(E,F))np.trace(np.dot(F,E))

在这里插入图片描述

  • 验证一下方阵的和的迹等于方阵的迹的和。
np.trace(E+F)np.trace(E)+np.trace(F)

在这里插入图片描述

五、python 方阵的行列式计算方法

  • 如何计算方阵的行列式,用到的是 numpy 模块的 linalg.det 方法。
  • 行列式计算方法:
    在这里插入图片描述
    在这里插入图片描述
  • 创建两个方阵(上面已经创建过了)。
EF

在这里插入图片描述

  • 使用 det 方法求得方阵 E 和方阵 F 的行列式。
np.linalg.det(E)np.linalg.det(F)

在这里插入图片描述

Cnp.linalg.det(C)

在这里插入图片描述

六、python 求逆矩阵 / 伴随矩阵

  • 设 A 是数域上的一个 n 阶方阵,若在相同数域上存在另一个 n 阶矩阵 B,使得:AB=BA=E,则我们称 B 是 A 的逆矩阵,而 A 则被称为可逆矩阵,当矩阵 A 的行列式 |A| 不等于 0 时才存在可逆矩阵。
    在这里插入图片描述
  • 创建一个方阵。
A=np.array([[1,-2,1],[0,2,-1],[1,1,-2]])
A

在这里插入图片描述

  • 使用 linalg.det 求得方阵的行列式。
A_abs=np.linalg.det(A)
A_abs

在这里插入图片描述

  • 使用 linalg.inv 求得方阵 A 的逆矩阵。
B=np.linalg.inv(A)
B

在这里插入图片描述

  • 接着我们利用公式: A − 1 = A ′ ′ / ∣ A ∣ A^{-1}=A''/|A| A1=A/A ——> A ′ ′ = A − 1 ∣ A ∣ A''=A^{-1}|A| A=A1A 来计算。
A_bansui=B*A_abs
A_bansui

在这里插入图片描述

七、python 解多元一次方程

  • 用 python 的 numpy 包中的 linalg.solve() 方法解多元一次方程。
  • 首先看一下我们要解的方程,将这个方程格式调整好,按照 x-y-z-常数项的顺序排列:
    x + 2 y + z = 7 2 x − y + 3 z = 7 3 x + y + 2 z = 18 x+2y+z=7\\ 2x-y+3z=7\\ 3x+y+2z=18 x+2y+z=72xy+3z=73x+y+2z=18
  • 将未知数的系数写下来,排列成一个矩阵 a ,如下:
a=[[1,2,1],[2,-1,3],[3,1,2]]
a=np.array(a)
a

在这里插入图片描述

  • 常数项构成一个一维数组(向量)。
b=[7,7,18]
b=np.array(b)
b

在这里插入图片描述

  • 使用linalg.solve 方法解方程,参数 a 指的是系数矩阵,参数 b 指的是常数项矩阵。
x=np.linalg.solve(a,b)
x

在这里插入图片描述

  • 使用点乘的方法可以验证一下,系数乘以未知数可以得到常数项。
np.dot(a,x)

在这里插入图片描述

这篇关于python 编程求矩阵运算及求多元一次方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/221844

相关文章

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.