【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】

本文主要是介绍【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、全功能AI开发平台介绍
  • 二、AI项目落地应用流程(以文本分类为例)
    • 2-0、项目开始
    • 2-1、项目背景
    • 2-2、数据准备介绍
    • 2-3、项目数据
    • 2-4、建模调参介绍
    • 2-5、项目的建模调参
    • 2-6、开发部署
    • 2-7、项目在公有云的部署
  • 附录:调用api代码
  • 总结

一、全功能AI开发平台介绍

在这里插入图片描述

全功能AI开发平台是一个综合性的平台,旨在支持各种人工智能(AI)应用的开发、部署和管理。这些平台通常提供一系列工具、库和服务,以帮助开发者、数据科学家和工程师创建和操作各种类型的AI应用。以下是全功能AI开发平台通常提供的一些功能和特性

  • 数据管理:提供数据存储、数据集成、数据清洗和数据标注工具,以支持AI模型的训练和评估。
  • 模型开发:包括模型训练、调优和验证工具,以及深度学习框架集成,使开发者能够创建自定义AI模型。
  • 自动化ML(AutoML):提供自动化工具,可以自动选择和调整模型参数,以简化模型开发流程。
  • 部署和托管:支持AI模型的部署到云端或边缘设备,并提供自动扩展和管理模型的能力。
  • 可解释性和监控:提供模型解释性工具,以及实时性能监控和错误检测,以确保AI应用的可靠性和可解释性。
  • 集成和API:支持将AI功能集成到现有应用程序中,以及提供API,以便其他应用程序可以调用AI模型。
  • 安全性和隐私:提供安全性和隐私保护功能,以确保AI应用的数据和模型的安全性。
  • 可视化工具:提供可视化界面,以简化模型训练和部署的管理和监控。

下面以百度BML全功能AI开发平台为例进行介绍(一站式AI开发流程如下),且底层框架内置文心大模型基座

在这里插入图片描述

二、AI项目落地应用流程(以文本分类为例)

2-0、项目开始

任务抽象

  • 项目有多少个任务场景
  • 每个任务场景需要开发多少个模型
  • 部署场景的约束是什么

任务流程介绍

  • 采集/标注数据
  • 选择预训练模型
  • 数据增强策略
  • 超参数调整
  • 模型训练以及评估
  • 分析报告

2-1、项目背景

项目背景介绍

在我们的生活和工作中,很多事情都可以转化为一个分类问题来解决,比如“上班坐公交还是坐地铁”、“吃米饭还是吃面条”等等可以转化为二分类问题。自然语言处理领域也是这样,大量的任务可以用文本分类的方式来解决,比如垃圾文本识别、涉黄涉暴文本识别、意图识别、文本匹配、命名实体识别等,有着极其广泛的应用场景:

  • 投诉信息分类:训练客服投诉信息的自动分类,将每个用户投诉的内容进行分类管理,节省大量客服人力。
  • 媒体文章分类:训练网络媒体文章的自动分类,进而实现各类文章的自动分类。
  • 文本审核:定制训练文本审核的模型,如训练文本中是否含有违规/偏激性质的描述。

中文新闻文本标题分类任务简介

  • 新闻分类是文本分类中常见的应用场景。在传统分类模式下,往往是通过人工对新闻内容进行核对,从 而将新闻划分到合适的类别中。这种方式会消耗大量的人力资源,并且效率不高。采用深度学习的方法可以取得较高的分类精度,是新闻推荐等场景下的基础任务。

使用BML开发平台,注册账号并且开始使用:官方链接
在这里插入图片描述

2-2、数据准备介绍

项目数据

  • 项目任务需要什么样的数据
  • 如何制作高质量的数据集(图片数据:是否存在高度相似、模糊的图片,进行数据的清洗)
  • 数据量不够怎么办(每一类的图片数量是否大于80张?是否需要增加图片以平衡类别数量?进行上采样?)

高质量数据

  • 数据标注正确
  • 尽量提升数据的类别,提升模型的泛化能力
  • 保证训练数据尽量与业务数据接近,各个类别平衡
  • 数据划分正确,测试集验证集不会泄露。
  • 以结果为导向看数据:看哪个类别的数据模型不太擅长识别,即分析badcase,采用数据增强增加数据数量。

数据增强(以图片的数据增强为例)

  • 对比度
  • 色平衡
  • 亮度
  • 锐化
  • 目标框裁剪
  • 标注框旋转
  • 标注框翻转
  • 水平裁剪

BML平台优势

  • 智能标注
  • 多人标注
  • 数据质检报告
  • 支持与数据采集设备直连
  • BML自动化数据清洗:去近似、去模糊、裁剪、旋转、镜像。
  • 自动数据增强。开放超过40种算子,灵活配置

在这里插入图片描述

2-3、项目数据

本文采用中文新闻文本标题分类数据集进行示例:数据

在这里插入图片描述

  • 点击数据集管理,并创建数据集。

在这里插入图片描述

  • 在创建数据集界面,设置好相关信息并点击完成

在这里插入图片描述

  • 填写导入配置信息: 设置数据的标注状态,是否为有标注信息,从本地导入,上传txt文本。之后点击上传txt文本将下载好的数据上传。
    在这里插入图片描述

  • 数据集创建完成后,可以在数据集管理界面看到导入的数据,并可以查看到导入状态、标注状态等信息。
    在这里插入图片描述

2-4、建模调参介绍

建模调参

  • 选择什么样的模型
  • 有没有精度更高的模型
  • 如何调优,进一步提升性能
  • 要不要购买服务器?

BML平台优势

  • 提供预置模型调参、NoteBook建模、自定义作业建模等三种开发方式,满足不同需求的开发者。

在这里插入图片描述

  • 自动调参:以某种高级策略搜索超参组合,自动获得优秀的模型效果
    在这里插入图片描述

2-5、项目的建模调参

  • 选择使用预置模型调参,选择自然语言处理模型,点击创建任务
    在这里插入图片描述
  • 选择类型为文本分类-类型为单文本单标签。
    在这里插入图片描述
  • 创建完成后点击新建运行。
    在这里插入图片描述
  • 添加数据可以选择刚才导入的数据集,也可以选择公开数据集(二分类。数据量较少),需要注意的是,如果选择公开数据集,可以跳过前边的所有步骤。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 在配置模型阶段,可以进行相关预训练模型的配置以及超参数的设置。Tiny版本模型更小,训练速度更快,但是精度略差。之后设置训练资源,以及选择计算节点。提交运行任务。
    在这里插入图片描述
    在这里插入图片描述
  • 训练结束后点击评估报告,可以查看模型的表现情况(由于时间原因,我这里选择的是公开二分类数据进行训练), 点击配置详情可以查看训练时设置的参数,训练可视化可以查看训练过程中的指标变化

在这里插入图片描述
在这里插入图片描述

  • 进一步测试模型可以点击发布按钮进行模型的发布, 发布模型之后可以在发布模型这一列看到已经发布的模型,这时候点击评估报告可以看到模型校验按钮,可以进行模型的校验,输入文本进行校验。

在这里插入图片描述
在这里插入图片描述

2-6、开发部署

部署环境

云端:公有云部署,即将模型部署为在线服务,从而以REST API的方式提供推理预测能力。且公有云部署是最快捷的模型部署方式,不同类型的模型在执行公有云部署时的流程基本一致,当部署后在线API的接口与模型有关。

  • 易于部署迭代
  • 可使用大模型,快速上线
  • 高延迟
  • 成本线性升高

边缘端

  • 算力限制
  • 前期开发部署成本高
  • 低延迟
  • 成本可控

在线服务说明:在线服务当前仅允许一个模型版本处于上线状态,若上线时有其他模型版本在线,则会将当前版本下线并且上线新的版本。服务状态以及其含义说明如下所示:

在这里插入图片描述

在这里插入图片描述

2-7、项目在公有云的部署

  • 在模型仓库中选择发布的模型版本,之后进行在线服务部署。
    在这里插入图片描述
    在这里插入图片描述
  • 在线服务设置:设置服务名称以及接口地址,模型配置阶段设置已经发布的模型以及对应版本,在资源配置阶段设置好需要使用的配置,按照小时计费。
    在这里插入图片描述
  • 创建好在线服务之后,创建应用,之后调用接口进行服务调用

在这里插入图片描述
在这里插入图片描述

  • 之后使用ak、sk以及请求url来进行接口的调用
    在这里插入图片描述
    在这里插入图片描述

附录:调用api代码

import requests
import jsonAPI_KEY = ""
SECRET_KEY = ""def main():url = "https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify?charset=&access_token=" + get_access_token()payload = json.dumps("")headers = {'Content-Type': 'application/json','Accept': 'application/json'}response = requests.request("POST", url, headers=headers, data=payload)print(response.text)def get_access_token():"""使用 AK,SK 生成鉴权签名(Access Token):return: access_token,或是None(如果错误)"""url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}return str(requests.post(url, params=params).json().get("access_token"))if __name__ == '__main__':main()

参考文章:
百度BML全功能开发平台官网.
数据集管理.
EasyDL文本价格整体说明.
开发文档训练、部署等.
鉴权认证机制.
服务与支持文档.
示例代码中心.


总结

人有悲欢离合,月有阴晴圆缺,此事古难全。

这篇关于【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220167

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测