LiveData 数据倒灌:别问,问就是不可预期

2023-10-16 06:10

本文主要是介绍LiveData 数据倒灌:别问,问就是不可预期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是《Jetpack MVVM Best Practice》作者 KunMinX。

今天提到的 “数据倒灌” 一词,是我为了方便理解和记忆 “页面在 ‘二进宫’ 时收到旧数据推送” 的情况,而在 2019 年 自创并在网上传播的 对此类现象的概括

它主要发生在:通过 SharedViewModel + LiveData 的组合 来解决页面通信的场景。

本文的目标

由于本文的目标主要是来介绍 官方 Demo 现有解决方案的缺陷,以及经过 1 年迭代的完美解决方案,

所以我假设在座的诸位 对最基本的背景缘由有一定的了解,知道:

为什么 LiveData 默认被设计为粘性事件

为什么 官方文档 推荐使用 SharedViewModel + LiveData(文档没明说,但事实上包含三个关键的背景缘由)

乃至为什么存在 “数据倒灌” 的现象

以及为什么在 “页面通信” 的场景下,不用静态单例、不用 LiveDataBus

如果对于这些前置知识也尚不了解,可结合个人兴趣前往《LiveData 数据倒灌 背景缘由全貌 独家解析》查阅,此处不再累述。

现有解决方案及各自缺陷

在《Jetpack MVVM 精讲》中我分别提到了 Event 事件包装器、反射方式、SingleLiveEvent 这三种方式来解决 “数据倒灌” 的问题。它们分别来自上文我们提到的外网、美团的文章,和官方最新 demo。

但正如我在《Jetpack MVVM 精讲》介绍的,它们分别存在如下问题:

Event 事件包装器:

对于多观察者的情况,只允许第一个观察者消费,这不符合现实需求;

而且手写 Event 事件包装器,在 Java 中存在 null 安全的一致性问题。

·

反射干预 Version 的方式:

存在延迟,无法用于对实时性有要求的场景;

并且数据会随着 SharedViewModel 长久滞留在内存中得不到释放。

·

官方最新 demo 中的 SingleLiveEvent:

是对 Event 事件包装器 一致性问题的改进,但未解决多观察者消费的问题;

而且额外引入了消息未能从内存中释放的问题。

UnPeekLiveData 特点

UnPeekLiveData 通过 独创的 “延时自动清理消息” 的设计,来满足:

1.消息被分发给多个观察者时,不会因第一个观察者消费了而直接被置空

2.时限到了,消息便不再会被倒灌

3.时限到了,消息自动从内存中清理释放

4.使非入侵的设计成为可能,并最终结合官方 SingleLiveEvent 的设计实现了 遵循开闭原则的非入侵重写

并且 UnPeekLiveData 提供了构造器模式,可通过构造器组装适合自己业务场景的 UnPeekLiveData。

零入侵设计延时自动清理消息Builder 构造器

PS:非常感谢近期 hegaojian、Angki、Flynn、Joker_Wan 等小伙伴积极的试用和反馈,使得未被觉察的问题 被及时发现和纳入考虑。

JCenter 依赖

详见 GitHub:https://github.com/KunMinX/UnPeekLiveData

License

本文以 CC 署名-非商业性使用-禁止演绎 4.0 国际协议 发行。

Copyright © 2019-present KunMinX

文中提到的 对 “数据倒灌” 一词及其现象的概括、对 Event 事件包装器、反射方式、SingleLiveEvent 各自存在的缺陷的理解,以及对 UnPeekLiveData 的 “延迟自动清理消息” 的设计,均属于本人独立原创的成果,本人对此享有所有权和最终解释权。

当您借鉴或引用本文的引言、思路、结论进行二次创作,或全文转载时,须注明链接出处,否则我们保留追责的权利。

这篇关于LiveData 数据倒灌:别问,问就是不可预期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219575

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核