[bzoj1087][DP][状态压缩]互不侵犯King

2023-10-16 04:38

本文主要是介绍[bzoj1087][DP][状态压缩]互不侵犯King,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

方案数。

Sample Input

3 2

Sample Output

16

HINT

N,K ( 1 <=N <=9, 0 <= K <= N * N)

题解

嗯。最近学的状态压缩,一道不错的状态压缩题。我们开一个三维的dp数组。dp[i][j][k]表示第i行,第j个状态(二进制的j。0表示不放国王,1表示放国王),到目前共使用了k个国王(包括本行)的最多方案数。状态转移方程就是dp[i][j][k]=dp[i][j][k]+dp[i-1][l][k-sum[i]] (l表示上一行与j可以匹配的方案,sum[i]表示第i个状态的人数).
这样我们就可以开心地用状态压缩做啦~第一道自己ac的bzoj题,很开心~

代码
update 2017/10/28
原先的代码太丑了。。不符合风范,改一改

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL f[10][1100][90];//i行 排列为j 共放k个 
int bin[11],n,kk;
int tmp[1100],tp,pos[1100];
int main()
{bin[1]=1;scanf("%d%d",&n,&kk);for(int i=2;i<=n+1;i++)bin[i]=bin[i-1]*2;memset(f,0,sizeof(f));tp=0;for(int i=0;i<=(1<<n)-1;i++)if((i&(i<<1))==0){int s=0;for(int j=1;j<=n;j++)if((i&bin[j])!=0)s++;f[1][i][s]++;tmp[++tp]=i;pos[tp]=s;}for(int i=2;i<=n;i++)for(int j=1;j<=tp;j++)for(int k=1;k<=tp;k++){if((tmp[j]&tmp[k])==0 && (tmp[j]&(tmp[k]<<1))==0 && (tmp[j]&(tmp[k]>>1))==0){for(int l=pos[k];l<=kk-pos[j];l++)f[i][tmp[j]][l+pos[j]]+=f[i-1][tmp[k]][l];}}LL ans=0;for(int i=1;i<=tp;i++)ans+=f[n][tmp[i]][kk];printf("%lld\n",ans);return 0;
}

这篇关于[bzoj1087][DP][状态压缩]互不侵犯King的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219090

相关文章

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm