[bzoj4152][最短路][Dijkstra]The Captain

2023-10-16 03:58

本文主要是介绍[bzoj4152][最短路][Dijkstra]The Captain,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。

Input

第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],yi,依次表示每个点的坐标。

Output

一个整数,即最小费用。

Sample Input

5

2 2

1 1

4 5

7 1

6 7

Sample Output

2

题解

如果考虑每个点对都连边的话,复杂度N^2
我们看看怎么优化这个建图
把点按x排序,两个点之间只看x的距离,实际上就相当于这两个点中间找一个中间点,这两个点分别到这个中间点的距离和
那么这个操作是可继续拆分的,于是我们把x排序后,相邻两点连边即可
y坐标讨论相同
最后跑Dijkstra即可

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
struct node
{int x,y,c,next;
}a[810000];int len,last[210000];
void ins(int x,int y,int c)
{len++;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;
}
struct ct{int x,y,op;}P[210000];
bool cmp1(ct n1,ct n2){return n1.x<n2.x;}
bool cmp2(ct n1,ct n2){return n1.y<n2.y;}
int d[210000];
struct pt
{int x;friend bool operator <(pt n1,pt n2){return d[n1.x]>d[n2.x];}
};
priority_queue<pt> q;
bool v[210000];
int n;
int main()
{scanf("%d",&n);for(int i=1;i<=n;i++)scanf("%d%d",&P[i].x,&P[i].y),P[i].op=i;sort(P+1,P+1+n,cmp1);for(int i=1;i<n;i++)ins(P[i].op,P[i+1].op,P[i+1].x-P[i].x),ins(P[i+1].op,P[i].op,P[i+1].x-P[i].x);sort(P+1,P+1+n,cmp2);for(int i=1;i<n;i++)ins(P[i].op,P[i+1].op,P[i+1].y-P[i].y),ins(P[i+1].op,P[i].op,P[i+1].y-P[i].y);memset(d,63,sizeof(d));d[1]=0;memset(v,false,sizeof(v));v[1]=true;pt tmp;tmp.x=1;q.push(tmp);while(!q.empty()){tmp=q.top();int x=tmp.x;for(int k=last[x];k;k=a[k].next){int y=a[k].y;if(d[y]>d[x]+a[k].c){d[y]=d[x]+a[k].c;if(v[y]==false){v[y]=true;pt cnt;cnt.x=y;q.push(cnt);}}}q.pop();v[x]=false;}printf("%d\n",d[n]);return 0;
}

这篇关于[bzoj4152][最短路][Dijkstra]The Captain的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218873

相关文章

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10801(乘电梯dijkstra)

题意: 给几个电梯,电梯0 ~ n-1分别可以到达很多层楼。 换乘电梯需要60s时间。 问从0层到target层最小的时间。 解析: 将进入第0层的电梯60s也算上,最后减。 坑点是如果target为0输出0。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algori

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

poj 3255 次短路(第k短路) A* + spfa 或 dijkstra

题意: 给一张无向图,求从1到n的次短路。 解析: A* + spfa 或者 dijkstra。 详解见上一题:http://blog.csdn.net/u013508213/article/details/46400189 本题,spfa中,stack超时,queue的效率最高,priority_queue次之。 代码: #include <iostream>#i

poj 2449 第k短路 A* + spfa

poj 2449: 题意: 给一张有向图,求第k短路。 解析: A* + spfa。 一下转自:http://blog.csdn.net/mbxc816/article/details/7197228 “描述一下怎样用启发式搜索来解决K短路。 首先我们知道A*的基础公式:f(x)=g(x)+h(x);对h(x)进行设计,根据定义h(x)为当前的x点到目标点t所需要的实际距

poj 3259 最短路负环

John的农场里N块地,M条路连接两块地,W个虫洞,虫洞是一条单向路,会在你离开之前把你传送到目的地,就是当你过去的时候时间会倒退Ts。我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前的自己。简化下,就是看图中有没有负权环。有的话就是可以,没有的话就是不可以了。 import java.io.BufferedReader;import java.io.InputStream;

POJ1724最短路

n个点,拥有总的价值money m条边(u,v,len ,cost),长度len,代价cost 求不超过money的代价条件下最短路。 public class Main {public static void main(String[] args) {new Task().solve();}}class Task {InputReader in = new InputReader