[bzoj3622][DP][容斥原理]已经没有什么好害怕的了

2023-10-16 03:38

本文主要是介绍[bzoj3622][DP][容斥原理]已经没有什么好害怕的了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

这里写图片描述

Input

这里写图片描述

Output

这里写图片描述

Sample Input

4 2

5 35 15 45

40 20 10 30

Sample Output

4

HINT

输入的2*n个数字保证全不相同。

还有输入应该是第二行是糖果,第三行是药片

题解

DP呀..
从小到大排序
显然我们要找 n+k2 n + k 2 个糖果比药片大的组合
朴素dp方程,设 f[i][j] f [ i ] [ j ] 表示前 i i 个中找到j个合法组合 其它不管的数量
转移有

f[i][j]=f[i1][j]+f[i1][j1](pos[i]j+1) f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − 1 ] ∗ ( p o s [ i ] − j + 1 )

其中 pos[i] p o s [ i ] 表示 i i 最多能取到哪一位
会有重复
因为
a1>b1 a2>b2 a3>b3
选(a1,b1,a2,b2)和(a1,b1,a3,b3)会被判为两种不同情况
于是设g[i]表示 n n 个钟只有i个合法情况的状态数
转移有
g[i]=f[n][i](ni)!j=i+1ng[j] g [ i ] = f [ n ] [ i ] ∗ ( n − i ) ! − ∑ j = i + 1 n g [ j ]

前面表示只取i个,后面任选
然后去掉比i多的数目的算到i里的东西
就可以了。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define mod 1000000009
#define LL long long
using namespace std;
LL pow_mod(LL a,LL b)
{LL ret=1;while(b){if(b&1)ret=ret*a%mod;a=a*a%mod;b>>=1;}return ret;
}
LL inv[2005],pre[2005];
LL C(int n,int m){return pre[n]*inv[m]%mod*inv[n-m]%mod;}
int a[2005],b[2005],n,m,pos[2005];
LL f[2005][2005],g[2005];
void dl(LL &x,LL y){x-=y;if(x<0)x+=mod;}
int main()
{pre[0]=1;for(int i=1;i<=2000;i++)pre[i]=pre[i-1]*i%mod;inv[2000]=pow_mod(pre[2000],mod-2);for(int i=1999;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;scanf("%d%d",&n,&m);if((n+m)%2){puts("0");return 0;}m=(n+m)/2;for(int i=1;i<=n;i++)scanf("%d",&a[i]);for(int i=1;i<=n;i++)scanf("%d",&b[i]);sort(a+1,a+1+n);sort(b+1,b+1+n);int pa=0;for(int i=1;i<=n;i++){while(b[pa+1]<a[i]&&pa<n)pa++;pos[i]=pa;}f[0][0]=1;for(int i=1;i<=n;i++)for(int j=0;j<=i;j++){if(j!=0)f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(0,pos[i]-j+1))%mod;else f[i][j]=f[i-1][j];}for(int i=n;i>=m;i--){g[i]=f[n][i]*pre[n-i]%mod;for(int j=i+1;j<=n;j++)dl(g[i],g[j]*C(j,i)%mod);}printf("%lld\n",g[m]);return 0;
}

这篇关于[bzoj3622][DP][容斥原理]已经没有什么好害怕的了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218762

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr