左手Python右手Excel,玩转数据透视表哪家强?

2023-10-15 05:20

本文主要是介绍左手Python右手Excel,玩转数据透视表哪家强?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据透视表

什么是数据透视表?对于大多数才开始使用Excel组件的用户来说,可能只是听说过数据透视表,至于数据透视表具体用来做什么,以及它会给实际工作带来什么便利,估计就有很多人不是很清楚了。

数据透视表是一种可以快速汇总、分析和处理大量数据的交互式工具。

简单来说,数据透视表可以从不同角度对相同的数据进行处理和分析,以查看不同层面的数据结果,从而得到想要的数据信息。

形象点来说, 数据透视表就像一个万花筒,通过旋转这个特别的万花筒,可以从中获得不断变化的事物细节,但是事物的本身其实并未发生变化,数据透视表这个特别的万花筒只是一个工具,只不过通过该工具可以获得普通事物的独特视图。

适用场景:

  1. 表格中数据量较大时

  2. 表格中的数据结构不断变化时

  3. 当需要源数据与分析结果的更新保持一致时

数据透视表我们给大家区分了一下段位(青铜、黄金、钻石、王者),本次从小白到青铜段位。先来一波效果图

黄金段位:

钻石段位:

王者段位:

透视表术语介绍

  1. 数据源

指的是用来创建数据透视表的原始数据内容,原始数据既可以来自现有工作表,也可以从外部数据库中获取。

比如下图就是一部分数据源(也有称作:源数据):

  1. 字段

在上图中每一列的第一个单元格内容都为该列的数据分类,在生成数据透视表后,这些数据就是我们所说的字段

  1. 字段列表和字段设置区域

在插入了一个数据透视表后,工作表的右侧会同时出现一个名为“数据透视表字段”的任务窗格。(没有安装office,此处以wps为例介绍)

Excel的数据透视表使用

我们将上面的数据在Excel表格中创建一个透视表具体使用步骤如下:

接下来会打开一张表格:

比如我们要得到的最终结果是:

 则需要在数据透视表的设置区域进行如下操作:

接下来是年份的设置,大家可以看到最终的结果图是将年份内容设置到了列上。

最终效果:

Python操作这些数据最大的亮点是:数据量非常多的时候更有优势。

Python操作数据实现透视表功能

数据透视表的制作我们使用Pandas中的pivot_table完成,具体语法如下:

pivot_table(data,    # DataFramevalues=None,    # 值index=None,    # 分类汇总依据columns=None,    # 列aggfunc='mean',    # 聚合函数fill_value=None,    # 对缺失值的填充margins=False,    # 是否启用总计行/列dropna=True,    # 删除缺失margins_name='All'   # 总计行/列的名称)

首先读取数据:

import os
import numpy as np
import pandas as pddf = pd.read_excel('excel玩家等级.xlsx', sheet_name='原始表格' )
df

结果:

通过pivot_table来制作透视表:

# 透视数据
df_p = df.pivot_table(index=['学院','学科'],    # 透视的行,分组依据columns='年份', # 设置列为年份values='报名人数',    # 值aggfunc='sum'    # 聚合函数)
df_p

添加总计列:

df_p.columns=['2006','2007','2008']
df_p['总计'] = df_p.sum(axis=1)
df_p

结果:

最后追加一行总计数据行

result = df_p.sum(axis=0) # 此时是一个Series对象
result['学院'] = '总计'  # 添加数据
result['学科'] =''
# 对result进行转置
df_1 = pd.DataFrame(data=result)
df2 = df_1.T
df2.set_index(['学院','学科'],inplace=True)
# 在df_p上添加一行
df_p = df_p.append(df2)

这样我们就得到了同样的效果。

扫码添加请备注:python,进群与宋老师面对面交流:517745409

 

这篇关于左手Python右手Excel,玩转数据透视表哪家强?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/215582

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in