记录下如何用RNN 的LSTM 来生成评语吧,python应用

2023-10-14 12:59

本文主要是介绍记录下如何用RNN 的LSTM 来生成评语吧,python应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 需求分析
  • 实现逻辑
    • 处理数据:
    • 将数据数字化
    • 构建训练集
    • 构建模型
    • x训练模型
    • 预测句子方法
    • 测试
  • 总结:
  • 完整代码:

需求分析

我们需要生成一个完整通顺的句子,用来点评书法的课程表现。
如图:

‘爱齐齐,是一个资质非常不错的男孩,多练字让他的手部控笔得到良好的训练,初期顿笔夸张异形也在练字中得到了改正。在小金熊培养出了对书写的兴趣,能够完全静心书写,很少被其他事情影响。让书写成为小齐齐最闪光的优点,一手漂亮的字能更让孩子更自信。相信再经过暑假的集训学习,到了一年级新班小齐齐的书写一定会惊艳全班、、’

实现逻辑

处理数据:

在这里插入图片描述
可以看到数据集中有很多垃圾的字符,运用正则去除。

content = re.sub('\[[^\]]*\]|\n', '', content)
  • 再运用jieba库将中文分词
seg_list = jieba.cut(content, cut_all= False)str = " ".join(seg_list)
import pandas as pds
import re
from sklearn.feature_extraction.text import CountVectorizer
import jiebadata = pds.read_excel('./comment.xlsx')
arr = []
for content in data.content:char = '\n'list=[i.start() for i in re.finditer(char, content)]if len(list) > 3:content = content[list[2]:]content = re.sub('\[[^\]]*\]|\n', '', content)seg_list = jieba.cut(content, cut_all= False)str = " ".join(seg_list)arr.append(str)
  • 查看数据
    在这里插入图片描述

将数据数字化

  • 生成语料库:相当于字典
import tensorflow.keras as keras
from tensorflow.keras.preprocessing.text import Tokenizertokenizer = Tokenizer(num_words= 500, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n')
tokenizer.fit_on_texts(arr)
  • 将数据转成数值表示
token_list = tokenizer.texts_to_sequences([line])[0]
  • 将每个句子转化 成回归模式:所以要把句子转化成
    在这里插入图片描述
    32
    12 32
    1 12 32
    用于训练
  • 将数据长度归一化。运用pad_sequences
input_sentences = np.array(pad_sequences(input_sentences, maxlen=max_sentences_len, padding='pre'))

代码:

import numpy as np  
from keras.preprocessing.sequence import pad_sequences
input_sentences = []
for line in arr:token_list = tokenizer.texts_to_sequences([line])[0]for i in range(1,len(token_list)):n_pre_sequences = token_list[:i+1]input_sentences.append(n_pre_sequences)
max_sentences_len = max([len(x) for x in input_sentences])
input_sentences = np.array(pad_sequences(input_sentences, maxlen=max_sentences_len, padding='pre'))
input_sentences

构建训练集

xs = input_sentences[:,:-1]
labels = input_sentences[:,-1]
  • 将标签转成稀疏矩阵
from tensorflow.keras.utils import to_categorical
ys = to_categorical(labels, num_classes=total_words)

构建模型

model = keras.Sequential()
model.add(keras.layers.Embedding(total_words, 64, input_length=max_sentences_len - 1))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(20)))
model.add(keras.layers.Dense(total_words, activation='softmax'))
model.compile(loss = keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'])

x训练模型

history = model.fit(xs, ys, epochs=200, verbose=1)

预测句子方法

def pre_text(seed_text, next_words):for _ in range(1, next_words):token_list = tokenizer.texts_to_sequences([seed_text])[0]token_list = pad_sequences([token_list], maxlen=max_sentences_len - 1, padding='pre')predicted = model.predict(token_list, verbose=0)pre_index = np.argmax(predicted[0])for word, index in tokenizer.word_index.items():if index == pre_index:seed_text += " " +wordbreakreturn seed_text.replace(" ", '')

测试

print(pre_text('宝贝', 100))
pre_text('一学期', 100)

在这里插入图片描述

宝贝,是一个资质非常不错的男孩,多练字让他的手部控笔得到良好的训练,初期顿笔夸张异形也在练字中得到了改正。在小金熊培养出了对书写的兴趣,能够完全静心书写,很少被其他事情影响。让书写成为小齐齐最闪光的优点,一手漂亮的字能更让孩子更自信。相信再经过暑假的集训学习,到了一年级新班小齐齐的书写一定会惊艳全班、、。

‘一学期乐乐的进步不是一点点,感谢妈妈的信任与坚持,还记得第一次课一个笔画都歪歪扭扭,现在可以整张冒满泡泡,懿杰也更开心、更自信了建议,趁热打铁,赶紧多练。在我们在小金熊课程每次都开开心心,每次是她的机灵的,让他的。书写基础。书写的很小气、扭扭捏捏到现在字型结构正确、很大气,真的进步不小,熟能生巧,书写速度还有待提升多锻炼手部全班的力量’

总结:

基本功能实现,由于数据太少,所以预测的很多都是重复的,下一步就是收集更多的数据进行训练。

完整代码:

import pandas as pds
import re
from sklearn.feature_extraction.text import CountVectorizer
import jiebadata = pds.read_excel('./comment.xlsx')
arr = []
for content in data.content:char = '\n'list=[i.start() for i in re.finditer(char, content)]if len(list) > 3:content = content[list[2]:]content = re.sub('\[[^\]]*\]|\n', '', content)seg_list = jieba.cut(content, cut_all= False)str = " ".join(seg_list)arr.append(str)import tensorflow.keras as keras
from tensorflow.keras.preprocessing.text import Tokenizertokenizer = Tokenizer(num_words= 500, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n')
tokenizer.fit_on_texts(arr)total_words = len(tokenizer.word_index) + 1import numpy as np  
from keras.preprocessing.sequence import pad_sequences
input_sentences = []
for line in arr:token_list = tokenizer.texts_to_sequences([line])[0]for i in range(1,len(token_list)):n_pre_sequences = token_list[:i+1]input_sentences.append(n_pre_sequences)
max_sentences_len = max([len(x) for x in input_sentences])
input_sentences = np.array(pad_sequences(input_sentences, maxlen=max_sentences_len, padding='pre'))
input_sentencesxs = input_sentences[:,:-1]
labels = input_sentences[:,-1]from tensorflow.keras.utils import to_categorical
ys = to_categorical(labels, num_classes=total_words)
model = keras.Sequential()
model.add(keras.layers.Embedding(total_words, 64, input_length=max_sentences_len - 1))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(20)))
model.add(keras.layers.Dense(total_words, activation='softmax'))
model.compile(loss = keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'])history = model.fit(xs, ys, epochs=200, verbose=1)
# def pre_text(seed_text, next_words):for _ in range(1, next_words):token_list = tokenizer.texts_to_sequences([seed_text])[0]token_list = pad_sequences([token_list], maxlen=max_sentences_len - 1, padding='pre')predicted = model.predict(token_list, verbose=0)pre_index = np.argmax(predicted[0])for word, index in tokenizer.word_index.items():if index == pre_index:seed_text += " " +wordbreakreturn seed_text.replace(" ", '')
print(pre_text('宝贝', 100))
pre_text('一学期', 100)

这篇关于记录下如何用RNN 的LSTM 来生成评语吧,python应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210678

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n