SPSS学习笔记 -- 二维组间方差分析

2023-10-14 11:50

本文主要是介绍SPSS学习笔记 -- 二维组间方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考书籍:《SPSS其实很简单》
例子:
调查·物理治疗和放松锻炼·对治疗背伤的效果。
其中,物理治疗有两种方式:拉伸锻炼和力量锻炼;
放松锻炼有两种方式:肌肉放松和引导意象。
调查设计:参与调查的24个人分为4组选用以下4种情况的一种:

肌肉放松+拉伸引导意象+拉伸
肌肉放松+力量引导意象+力量

研究持续6周,参与者每周定期进行特定的训练。
结束时,每个参与者对当前疼痛水平做出打分:0分表示没伤,60分表示严重背伤。


二维组间方差分析的适用情况:
应用于·两个自变量估计一个连续因变量·的情况。
两个自变量都是·包含两个或是更多水平·的组间因素。
每个参与者只能接受每个因素的一个水平。
二维组间方差分析的假定:

  1. 观测是独立的;
  2. 每个单元的因变量总体服从正态分布;
  3. 每个单元的总体方差相等;

二维组间方差分析的目标:

  1. 检验主效应:
  • ·拉伸和力量锻炼·对背伤的影响有显著差异么?
  • ·肌肉放松和引导意象·对背伤的影响有显著差异么?
  1. 检验交互效应:
  • 物理治疗对背伤的影响依赖于放松锻炼的类型么?
    二维组间方差分析的数据要求:
  • 自变量:·具有两个或以上水平·的组间因素;
  • 因变量:连续
    在这里,自变量为物理治疗和放松锻炼(两因素各有两个水平),因变量为六周后的疼痛水平。
    二维组间方差分析的原假设和备择假设:
    检验三个不同的原假设。主效应检验:检验每个自变量对因变量的影响是否显著(这里,有物理治疗和放松锻炼两个自变量,故需要2次);
    交互效应检验:检验两个自变量的混合效应对因变量的影响是否显著。
    假设1:物理治疗检验
    原假设:拉伸和力量锻炼带来的平均疼痛水平在总体上是一样的。
    假设2:放松锻炼检验
    原假设:肌肉放松和引导意象 带来的平均疼痛水平在总体上是一样的。
    假设3 : 物理治疗和放松锻炼 交互效应的检验
    原假设:物理治疗和放松锻炼 这两个自变量没有交互效应。
  • 如果检验产生的结果在原假设正确时看起来不可能(结果发生的可能性小于5%),则拒绝原假设。
  • 如果检验产生的结果在原假设正确时看起来是正确的(结果发生的可能性大于5%),则接受不拒绝原假设。
    数据处理:
    在这里插入图片描述
    在这里插入图片描述
    第一行记录表示:参与者1进行的物理治疗是拉伸(1),放松锻炼是肌肉放松(1),最终对当前疼痛的打分是30分。
    -在二维组间方差分析中,在SPSS中的每一列表示 一个因素(在这一列中可以使用“1”,“2”等表示不同的水平)。
    操作:
    把自变量phyther 和 relax 的变量类型调成分类变量。
    【分析(analysis)】–【一般线性模型(general linear model)】–【单变量(univariate)】;
    在单变量对话框中,因变量为pain,自变量为phyther和relax(设置为固定因子)。
    在这里插入图片描述
    设置【EM平均值】:即设置估算边际平均值,选中·两个自变量和一个交互·点击箭头,拉入“显示下列各项的平均值”的框中,展示如下:
    在这里插入图片描述
    设置【选项(options)】:选中显示【描述统计(descriptive statistics)】、【齐性检验(homogeneity tests)】、【效应量估算(estimates of effect size)】;
    设置【图(plots)】:选择phyther移到·horizontal axis·框中;选择relax移入·separate lines·框中;点击“添加”–交互效应phyther*relax显示在plots
    对话框中;
    【确定】–关闭单变量对话框;
    此外,还可以生成一个条形图,用来代替显示交互效应的轮廓图(profile plot).(在上面的操作中,勾选条形图,应该也会生成,这里只是为了熟悉广泛的绘图操作)
    在【数据视图】的菜单栏里,【图形】-【旧对话框】-【条形图】;
    在这里插入图片描述
    其中,个案组的摘要:summaries as groups of cases
    在这里插入图片描述
    类别轴:category axis;
    聚类定义依据:define clusters by
    【确定】,即可显示出条形图,如下:

结果解释:

  1. 表一:组间因素(between-subjects factos)、主体间因子
    显示研究的所有因素(自变量),每个因素的水平数目,变量值标签,变量每个水平的样本量。
    在这里插入图片描述
  2. 表二:描述统计量(descriptive statistics)
    显示研究中每种情况(每个因素的每个水平)的均值、标准差和样本量。
    在这里插入图片描述
  3. 表三:误差方差齐性Levene检验(Levene’s test of equality of error variances)
    对研究中的四个单元(情况)的方差是否相等提供了检验,这是二位组间方差分析的一个假设。
    Levene检验的原假设为
    H 0 : σ 1 , 1 2 = σ 1 , 2 2 = σ 2 , 2 2 H_{0}:\sigma_{1,1}^{2}=\sigma_{1,2}^{2}=\sigma_{2,2}^{2} H0:σ1,12=σ1,22=σ2,22(四个单元的方差总体相等)
    H 1 : 至 少 有 一 个 方 差 与 其 他 不 等 H_{1}:至少有一个方差与其他不等 H1:
    检查p-值评价方差相等假设。
    如果p<=0.05,拒绝原假设,认为四个总体方差不等;
    如果p>0.05,不拒绝原假设,假设研究中的四个单元方差相等。
    在这里插入图片描述
    Levene检验得到F值为1.238,p-值为0.322>0.05,不能拒绝方差相等的原假设,即假设研究中的四个单元方差相等。
  4. 组间效应检验(Test of between-subjects effects)
    显示主效应(phyther 和 relax)和交互效应(phyther*relax)的结果。
    在二维方差分析中,对每个主效应和交互效应进行了独立的F检验。
    F检验是两个方差的壁纸,每个方差在输出中表示均方(MS): F = M S . E f f e c t M S . E r r o r F=\frac{MS.Effect}{MS.Error} F=MS.ErrorMS.Effect,其中MS.Effect表示感兴趣检验的均方,MS.Error表示Test of Between-Subjects Effects表中的均方误差值。
    示例说明:自变量phyther的MS值为1276.042,MS Error值为30.992,则phyther的F值为1276.042/30.992 = 41.174.
    自变量的自由度=水平数-1;
    误差的自由度 = 总样本量 - 研究中的单元数目;
    在这里插入图片描述
    ·phyther·的p-值小于0.001,拒绝原假设,即拉伸和力量锻炼对背伤的影响是显著不同的。
    ·relax·的p-值小于0.001,拒绝原假设,即肌肉放松和引导意象对背伤的影响是显著不同的。
    ·phyther*relax·检验,自由度 = (phyther的水平数-1)*(relax的水平数-1),F=301.042/30.992=9.714,且交互检验的p-值为0.005(<0.05),拒绝原假设,即·phyther·和·relax·有显著的交互效应。
  5. 估计边际均值(Estimated Marginal Means)
    均值比纳基表对显著结果的方向性有很好的解释。而,如果检验不显著,任何边际均值之间的差别被认为是处于样本误差,而将不被描述。
    在这里插入图片描述
    在表·phyther·中,显示两种物理锻炼方法的边际均值。由上述分析,我们已经知道了phyther是显著的,而在这张边际均值表中,还可以知道拉伸情况报告的疼痛水平显著低于力量锻炼情况。
    在表·relax·,同样地,在已知ralex显著的情况下,肌肉放松情况报告的疼痛水平显著低于引导意象。
    边际均值的最后一张表·phyther*relax·显示显著交互效应的均值。主要看均值之差:在物理治疗:拉伸的情况下,肌肉放松 和 引导意象 的带来的疼痛水平之差为16.666分;而在物理治疗:力量 的情况下,肌肉放松 和 引导意象 带来的疼痛水平之差为2.5分;
    交互效应即差距(16.666 vs 2.50)存在显著不同。
    说明:放松锻炼的差异依赖于物理治疗类型。
    肌肉放松 和 拉伸锻炼 一起进行的患者有较低的疼痛水平(是四个单元中最低的)。
  6. 交互效应的图像显示
    可以使用轮廓图、条形图显示交互效应
    在这里插入图片描述
    容易看出:在拉伸情况下,肌肉放松和引导意象带来的疼痛水平差别很大;而在力量锻炼的情况下,二者的差异并不很明显。
    当对均值作图时,差异导致明显不平行的两条线,这时交互的另一种表现形式。
    在这里插入图片描述
  • 轮廓图和条形图应该怎么选择呢?
    当至少有一个自变量时区间或是比例变量时,使用轮廓图;
    当两个自变量时名义变量时,使用条形图。

  • 当交互效应显著时,分析主效应

在这里插入图片描述
当交互效应是显著时,显著的主效应可能会被误解。
relax的显著主效应说明肌肉放松和引导意象是显著不同的;
relax主效应预测的差,也就是边际均值之差,即44.583-35 = 9.583(也可以通过(16.666+2.5)/2 = 9.583 得到);
但是,对于拉伸锻炼,这个差异大于其主效应预测的值(16.666>9.583);
对于力量锻炼,这个差异小于其主效应预测的值(2.5 < 9.583);
因此,使用主效应描述放松锻炼的差异,会低估了拉伸锻炼的差异,高估了力量锻炼的差异。
如果没有显著的交互效应,主效应将恰当地表现组之间的差异。


效应量:
二维组间方差分析的效应量通常使用偏 η 2 \eta^{2} η2度量。
使用Test of between-subjects effects表中的平方和 S S SS SS
偏 η 2 = S S E f f e c t S S E f f e c t + S S E r r o r 偏\eta^{2} =\frac{SS_{Effect}}{SS_{Effect}+SS_{Error}} η2=SSEffect+SSErrorSSEffect
其中, S S E f f e c t SS_{Effect} SSEffect对应感兴趣效应的平方和, S S E r r o r SS_{Error} SSError对应误差的平方和。
示例:计算·phyther·的偏 η 2 \eta^{2} η2值为 1276.04 1276.04 + 619.83 = 0.67 \frac{1276.04}{1276.04+619.83} =0.67 1276.04+619.831276.04=0.67.
该值的取值范围是0~1,值越大,表示因变量的方差被效应解释得越多。
APA格式结果表达:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于SPSS学习笔记 -- 二维组间方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210317

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识