孤立森林学习笔记

2023-10-14 08:30
文章标签 学习 笔记 森林 孤立

本文主要是介绍孤立森林学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孤立森林学习笔记

前言

「孤立森林」是一种常用于检测异常数据的算法,它具有线性时间复杂度以及较优的性能。作为一种「无监督」的算法,它在深度学习泛滥的今天,仍有着较好的表现。

算法简介

separating an instance from the rest of the instances

作为一种异常检测算法,我们希望的就是在一些正常的数据中,找到那些异常值。

可以预见的是,我们想要找到的这些异常数据点在某种程度上应该是「孤立的」,否则大量聚集的孤立点本身就不能称之为孤立,而应该是属于正常值,异常点本身就是 「few and different」,这也正是算法实现的基础。

回到算法本身,孤立森林的基本思想也很简单:不断地对一个数据集进行随机二分,直到所有数据点都变成孤立的,或者数到达了指定高度。

In a data-induced random tree, partitioning of instances are repeated recursively until all instances are isolated.

你可以把他理解成一颗二叉树,数据经过不断划分,最后每一个节点中都只剩下一个值。

网上也有例子把孤立森林比喻成切蛋糕,随机切蛋糕,切一次可以生成两个子空间,以此循环下去,直到每子空间里面只包含一个数据点为止。

可以想象的是,在随机划分的过程中,孤立点容易被更早的划分出去;对于那些密集的点,往往可能到最后才划分完成。在上面的图中,对于 a, b, c, d 四个数据点,d 最早被划分出去,那么它是孤立点的可能性也就最大。

当然,一棵树肯定是不够的,我们需要重复上面的过程,生成 t 棵树,对于每一个数据点,计算它在孤立树中的平均高度,以此得到一个最后的分数:

s ( x , n ) = 2 − E ( h ( x ) ) c ( n ) s(x, n) =2^{-\frac{E(h(x))}{c(n)}} s(x,n)=2c(n)E(h(x))

其中 c(n) 为查找失败的平均长度。

s 越接近 1 越可能为异常数据,离 0 越近越可能是正常点。当大部分数据的 s 为 0.5,则表示数据无异常值。

算法示例

我们可以通过 sklearn 简单的实现孤立森林

>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])

下面是 sklearn 上的一个简单案例:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white',s=20, edgecolor='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green',s=20, edgecolor='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red',s=20, edgecolor='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()

参考文献

  • Liu FT, Kai MT, Zhou Z H Isolation Forest: Eighth IEEE International Conference on Data Mining, 2008C
  • 【异常检测】孤立森林(Isolation Forest)算法简介

这篇关于孤立森林学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209352

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个