Linux brk(),mmap()系统调用源码分析3:brk()的内存申请流程

2023-10-14 06:58

本文主要是介绍Linux brk(),mmap()系统调用源码分析3:brk()的内存申请流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux brk(),mmap()系统调用源码分析
brk()的内存申请流程


荣涛
2021年4月30日

  • 内核版本:linux-5.10.13
  • 注释版代码:https://github.com/Rtoax/linux-5.10.13

1. 基础部分

在之前文章中已经介绍了基础部分 《Linux内存管理 brk(),mmap()系统调用源码分析1:基础部分》,本文介绍brk的释放部分。

2. brk内存释放

在之前文章中已经介绍了brk内存释放过程《Linux内存管理 brk(),mmap()系统调用源码分析2:brk()的内存释放流程》

3. brk内存申请

本文介绍申请流程。如果新的 brk 位置高于 旧的 brk 位置,首先会查找旧brk所在的vma的下一个vma结构:

	next = find_vma(mm, oldbrk);if (next && newbrk + PAGE_SIZE > vm_start_gap(next))goto out;

如果下一个vma结构存在,并且新的brk+pagesize落在vma上,那么说明现在的brk满足要求,直接返回就行了,如果不是,就迎来了do_brk_flags

4. do_brk_flags

函数原型为:

static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)

入参分别为:起始地址,长度,标志。

函数是这么调用的do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf),该函数基本上是释放流程的逆向操作,这里只就几个核心的函数进行讲解,第一个get_unmapped_area

4.1. get_unmapped_area

brk系统调用肯定不是文件,所以file=NULL,

get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);

MAP_FIXED准确解释地址,如果addr和len指定的内存区域与任何现有映射的页面重叠,则现有映射的重叠部分将被丢弃.

首先调用arch_mmap_check,在x86下为0。接下来获取未映射区域,这区分了mmap类型:

	get_area = current->mm->get_unmapped_area;if (file) { /* 如果是文件映射 */if (file->f_op->get_unmapped_area)get_area = file->f_op->get_unmapped_area;} else if (flags & MAP_SHARED) {    /* 如果是共享的映射 *//** mmap_region() will call shmem_zero_setup() to create a file,* so use shmem's get_unmapped_area in case it can be huge.* do_mmap() will clear pgoff, so match alignment.*/pgoff = 0;get_area = shmem_get_unmapped_area; /* 共享 */}

首先从mm结构中获取了get_unmapped_area函数指针,这个指针牛的一批,在arch\x86\kernel\sys_x86_64.c里,通过函数指针调用addr = get_area(file, addr, len, pgoff, flags);

4.2. arch_get_unmapped_area

该结构是在arch_pick_mmap_layout函数中被赋予get_unmapped_area指针的,如下:

void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
{if (mmap_is_legacy())mm->get_unmapped_area = arch_get_unmapped_area;elsemm->get_unmapped_area = arch_get_unmapped_area_topdown;...

https://www.kernel.org/doc/gorman/html/understand/understand021.html#func:%20arch_get_unmapped_area

函数不长,但是操作很骚。先看参数:

do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf)get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);get_area(file, addr, len, pgoff, flags); -> arch_get_unmapped_areaarch_get_unmapped_areafind_start_endget_mmap_basevm_unmapped_areaunmapped_area
  • file=NULL;
  • addr=oldbrk;
  • len=newbrk-oldbrk;
  • pgoff=0;
  • flags=MAP_FIXED;(准确解释地址,如果addr和len指定的内存区域与任何现有映射的页面重叠,则现有映射的重叠部分将被丢弃.)

使用find_start_end获取begin和end:

static void find_start_end(unsigned long addr, unsigned long flags,unsigned long *begin, unsigned long *end)
{if (!in_32bit_syscall() && (flags & MAP_32BIT)) {   /* 32 位 *//* This is usually used needed to map code in smallmodel, so it needs to be in the first 31bit. Limitit to that.  This means we need to move theunmapped base down for this case. This can giveconflicts with the heap, but we assume that glibcmalloc knows how to fall back to mmap. Give it 1GBof playground for now. -AK */*begin = 0x40000000;*end = 0x80000000;if (current->flags & PF_RANDOMIZE) {*begin = randomize_page(*begin, 0x02000000);}return;}*begin	= get_mmap_base(1); /*  */if (in_32bit_syscall())*end = task_size_32bit();else*end = task_size_64bit(addr > DEFAULT_MAP_WINDOW);
}

首先判断如果不是32bit系统调用!in_32bit_syscall()并且设置了标记位(flags & MAP_32BIT),之类不成立,因为flags值为MAP_FIXED,那么接下来会执行*begin = get_mmap_base(1);。这个函数get_mmap_base直接返回is_legacy ? mm->mmap_legacy_base : mm->mmap_base;也就是mm->mmap_legacy_base,这个值等于几?他是在arch_pick_mmap_base设置的,在文章mmap随机化中有解释,也就是是否将mmap随机化,这是在一个漏洞的解决方法,此处不所解释,感兴趣可以参考一篇论文《Meltdown(熔断漏洞)- Reading Kernel Memory from User Space/KASLR | 原文+中文翻译》。
接着,调用task_size_64bit获取end地址。

然后判断长度:

	if (len > end)return -ENOMEM;

如果已存在,直接返回:

	if (addr) {addr = PAGE_ALIGN(addr);    /* 对齐 */vma = find_vma(mm, addr);   /* 查找对应 vma */if (end - len >= addr &&(!vma || addr + len <= vm_start_gap(vma)))return addr;}

接着是对数据结构vm_unmapped_area_info的填充

struct vm_unmapped_area_info {  /*  */
#define VM_UNMAPPED_AREA_TOPDOWN 1unsigned long flags;unsigned long length;unsigned long low_limit;unsigned long high_limit;unsigned long align_mask;unsigned long align_offset;
};

它是这么填充的:

	info.flags = 0;info.length = len;info.low_limit = begin;info.high_limit = end;info.align_mask = 0;info.align_offset = pgoff << PAGE_SHIFT;if (filp) {info.align_mask = get_align_mask();info.align_offset += get_align_bits();}

接着调用vm_unmapped_area,其调用unmapped_area(flags=0)

4.3. unmapped_area

这里的入参为:

  • file=NULL;
  • addr=oldbrk;
  • len=newbrk-oldbrk;
  • pgoff=0;
  • flags=MAP_FIXED;

他的操作在函数注释中给出:

/** We implement the search by looking for an rbtree node that* immediately follows a suitable gap. That is,* - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;* - gap_end   = vma->vm_start        >= info->low_limit  + length;* - gap_end - gap_start >= length*/

接着get_unmapped_area返回,并进行合法性判断:

	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);if (IS_ERR_VALUE(mapped_addr))  /* unlikely */return mapped_addr;

4.4. munmap_vma_range

该函数的注释为

munmap VMAs that overlap a range.
/* Clear old maps, set up prev, rb_link, rb_parent, and uf */

在这,我发现一个问题,find_vma_links函数永远不会返回真值,那么此处的while的作用是什么呢?

static inline int
munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,struct vm_area_struct **pprev, struct rb_node ***link,struct rb_node **parent, struct list_head *uf)
{/*  */while (find_vma_links(mm, start, start + len, pprev, link, parent))if (do_munmap(mm, start, len, uf))return -ENOMEM;return 0;
}

这里具体关于mm的操作可以参考函数copy_mmdup_mmvm_area_dup

4.5. may_expand_vm

/** Return true if the calling process may expand its vm space by the passed* number of pages*/
bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
{/* 检查映射的页数有没有超限 */if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)return false;/* 数据 mapping 1.在 brk系统调用传入的是0,此代码不执行*/if (is_data_mapping(flags) &&mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {/* Workaround for Valgrind */if (rlimit(RLIMIT_DATA) == 0 &&mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)return true;pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",current->comm, current->pid,(mm->data_vm + npages) << PAGE_SHIFT,rlimit(RLIMIT_DATA),ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");if (!ignore_rlimit_data)return false;}return true;
}

接下来检查系统配置,是否映射数量超限:

    /* 检查sysctl */if (mm->map_count > sysctl_max_map_count)return -ENOMEM;

4.6. vma_merge

brk 此处不对其进行讲解,将在mprotect系统调用中讲解。

4.7. vma_link

接下来,分配新的vma结构,并且填充响应的数据,并将vma添加至mm结构的链表和红黑树中:

	/** create a vma struct for an anonymous mapping*/vma = vm_area_alloc(mm);    /* 分配这个结构 */if (!vma) {vm_unacct_memory(len >> PAGE_SHIFT);return -ENOMEM;}vma_set_anonymous(vma);     /* 匿名vma */vma->vm_start = addr;       /* start */vma->vm_end = addr + len;   /* end */vma->vm_pgoff = pgoff;      /* 页内偏移 */vma->vm_flags = flags;      /* 标志 */vma->vm_page_prot = vm_get_page_prot(flags);    /* VMA 的权限 */vma_link(mm, vma, prev, rb_link, rb_parent);    /* 插入 */

其中vm_link函数:

static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,struct vm_area_struct *prev, struct rb_node **rb_link,struct rb_node *rb_parent)
{struct address_space *mapping = NULL;if (vma->vm_file) { /* 文件映射 */mapping = vma->vm_file->f_mapping;i_mmap_lock_write(mapping);}__vma_link(mm, vma, prev, rb_link, rb_parent);  /* 添加至链表和红黑树 */__vma_link_file(vma);   /* 文件映射的话,更新缓存 */if (mapping)i_mmap_unlock_write(mapping);mm->map_count++;    /* 映射计数++ */validate_mm(mm);    /*  */
}

这里的validate_mm在本文中不做过多讲解,将在后续文章中详细解说。

4.8. perf_event_mmap

brk 此处不对其进行讲解,将在手续文章中进行讲解。

然后,对mm结构字段进行更新:

	mm->total_vm += len >> PAGE_SHIFT;  /* 共映射的页数计数 */mm->data_vm += len >> PAGE_SHIFT;   /* 数据映射计数 */if (flags & VM_LOCKED)mm->locked_vm += (len >> PAGE_SHIFT);   /* 锁定的页面计数 */vma->vm_flags |= VM_SOFTDIRTY;return 0;

至此,do_brk_flags就返回了。接着,更新brk位置:

mm->brk = brk;

4.9. mm_populate

brk 此处不对其进行讲解,将在手续文章中进行讲解。

至此brk系统调用就返回至用户态程序。

5. 相关链接

  • https://www.cs.unc.edu/~porter/courses/cse506/f12/slides/address-spaces.pdf
  • https://stackoverflow.com/questions/14943990/overlapping-pages-with-mmap-map-fixed
  • 《Linux内存管理 brk(),mmap()系统调用源码分析1:基础部分》
  • 《Linux内存管理 brk(),mmap()系统调用源码分析2:brk()的内存释放流程》
  • 内核实现mmap的关键点-get_unmapped_area
  • mmap随机化
  • Meltdown(熔断漏洞)- Reading Kernel Memory from User Space/KASLR | 原文+中文翻译

这篇关于Linux brk(),mmap()系统调用源码分析3:brk()的内存申请流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208874

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,