深度学习2015年文章整理(CVPR2015)

2023-10-14 03:32

本文主要是介绍深度学习2015年文章整理(CVPR2015),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://blog.csdn.net/u010402786/article/details/50548996

国内外从事计算机视觉和图像处理相关领域的著名学者都以在三大顶级会议(ICCV,CVPR和ECCV)上发表论文为荣,其影响力远胜于一般SCI期刊论文,这三大顶级学术会议论文也引领着未来的研究趋势。CVPR是主要的计算机视觉会议,可以把它看作是计算机视觉研究的奥林匹克。博主今天先来整理CVPR2015年的精彩文章(这个就够很长一段时间消化的了) 
顶级会议CVPR2015参会paper网址: 
http://www.cv-foundation.org/openaccess/CVPR2015.py

来吧,一项项的开始整理,总有你需要的文章在等你!

CNN Architectures

CNN网络结构: 
1.Hypercolumns for Object Segmentation and Fine-Grained Localization 
Authors: Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik

2.Modeling Local and Global Deformations in Deep Learning: Epitomic Convolution, Multiple Instance Learning, and Sliding Window Detection 
Authors: George Papandreou, Iasonas Kokkinos, Pierre-André Savalle

3.Going Deeper With Convolutions 
Authors: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich 
这篇文章推荐一下,使用了《network in network》中的用 global averaging pooling layer 替代 fully-connected layer的思想。有看过的可以私信博主,一起讨论文章心得。

4.Improving Object Detection With Deep Convolutional Networks via Bayesian Optimization and Structured Prediction 
Authors: Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee

5.Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images 
Authors: Anh Nguyen, Jason Yosinski, Jeff Clune

Action and Event Recognition

1.Deeply Learned Attributes for Crowded Scene Understanding 
Authors: Jing Shao, Kai Kang, Chen Change Loy, Xiaogang Wang

2.Modeling Video Evolution for Action Recognition 
Authors: Basura Fernando, Efstratios Gavves, José Oramas M., Amir Ghodrati, Tinne Tuytelaars

3.Joint Inference of Groups, Events and Human Roles in Aerial Videos 
Authors: Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic, Song Chun Zhu

Segmentation in Images and Video

1.Causal Video Object Segmentation From Persistence of Occlusions 
Authors: Brian Taylor, Vasiliy Karasev, Stefano Soatto

2.Fully Convolutional Networks for Semantic Segmentation 
Authors: Jonathan Long, Evan Shelhamer, Trevor Darrell 
——文章把全连接层当做卷积层,也用来输出featuremap。这样相比Hypercolumns/HED 这样的模型,可迁移的模型层数(指VGG16/Alexnet等)就更多了。但是从文章来看,因为纯卷积嘛,所以featuremap的每个点之间没有位置信息的区分。相较于Hypercolumns的claim,鼻子的点出现在图像的上半部分可以划分为pedestrian类的像素,但是如果出现在下方就应该划分为背景。所以位置信息应该是挺重要需要考虑的。这也许是速度与性能的trade-off?

3.Is object localization for free - Weakly-supervised learning with convolutional neural networks 
——弱监督做object detection的文章。首先fc layer当做conv layer与上面这篇文章思想一致。同时把最后max pooling之前的feature map看做包含class localization的信息,只不过从第五章“Does adding object-level supervision help classification”的结果看,效果虽好,但是这一物理解释可能不够完善。

4.Shape-Tailored Local Descriptors and Their Application to Segmentation and Tracking 
Authors: Naeemullah Khan, Marei Algarni, Anthony Yezzi, Ganesh Sundaramoorthi

5.Deep Filter Banks for Texture Recognition and Segmentation 
Authors: Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi

6.Deeply learned face representations are sparse, selective, and robust, Yi Sun, Xiaogang Wang, Xiaoou Tang 
——DeepID系列之DeepID2+。在DeepID2之上的改进是增加了网络的规模(feature map数目),另外每一层都接入一个全连通层加supervision。最精彩的地方应该是后面对神经元性能的分析,发现了三个特点:1.中度稀疏最大化了区分性,并适合二值化;2.身份和attribute选择性;3.对遮挡的鲁棒性。这三个特点在模型训练时都没有显示或隐含地强加了约束,都是CNN自己学的。

Image and Video Processing and Restoration

1.Fast and Flexible Convolutional Sparse Coding 
Authors: Felix Heide, Wolfgang Heidrich, Gordon Wetzstein

2.What do 15,000 Object Categories Tell Us About Classifying and Localizing Actions? 
Authors: Mihir Jain, Jan C. van Gemert, Cees G. M. Snoek 
——物品的分类对行为检测有帮助作用。这篇文章是第一篇关于这个话题进行探讨的,是个深坑,大家可以关注一下,考虑占坑。

3.Hypercolumns for Object Segmentation and Fine-Grained Localization 
Authors:Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik 
——一个很好的思路!以前的CNN或者R-CNN,我们总是用最后一层作为class label,倒数第二层作为feature。这篇文章的作者想到利用每一层的信息。因为对于每一个pixel来讲,在所有层数上它都有被激发和不被激发两种态,作者利用了每一层的激发态作为一个feature vector来帮助自己做精细的物体检测。

3D Models and Images

1.The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose 
Authors: Silvia Zuffi, Michael J. Black

2.3D Shape Estimation From 2D Landmarks: A Convex Relaxation Approach 
Authors: Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu, Kostas Daniilidis

Images and Language

这个类别的文章需要好好看看,对思路的发散很有帮助

1.Show and Tell: A Neural Image Caption Generator 
Authors: Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan

2.Deep Visual-Semantic Alignments for Generating Image Descriptions 
Authors: Andrej Karpathy, Li Fei-Fei

3.Long-Term Recurrent Convolutional Networks for Visual Recognition and Description 
Authors: Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell

4.Becoming the Expert - Interactive Multi-Class Machine Teaching 
Authors: Edward Johns, Oisin Mac Aodha, Gabriel J. Brostow

其它

CNN卷积神经网络的改进(15年最新paper): 
http://blog.csdn.net/u010402786/article/details/50499864 
文章中的四篇文章也值得一读,其中一篇在上面出现过。一定要自己下载下来看一看。

这是另外一个博主的博客,也是对CVPR的文章进行了整理: 
http://blog.csdn.net/jwh_bupt/article/details/46916653

基本许多文章里面没有注释核心思想,接下来慢慢补充。2016-01-20


这篇关于深度学习2015年文章整理(CVPR2015)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207853

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: