走进GraalVM

2023-10-14 00:20
文章标签 走进 graalvm

本文主要是介绍走进GraalVM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 是什么
    • GraalVM是一个高性能的JDK,旨在加速用Java和其他JVM语言编写的应用程序的执行,同时还为JavaScript,Python,Ruby和许多其他流行语言提供运行
  • 特点
    • GraalVM可以代替JDK、JVM之前的工作。
    • GraalVM除了支持Java,也支持多种语言。
    • GraalVM可以对应用AOT(提前编译-静态编译),也就是把程序直接编译成二进制,从而提升启动速度、改进内存使用。
    • 为JVM提供了高性能的JIT-动态编译:也就是程序在运行时才会去编译
  • 提供运行Java的方法
    • 在 Hotspot JVM 上使用实时JIT 编译器
    • 使用 AOT 将 Java 应用程序编译的本地可执行文件
  • 和JVM的关系
    • GraalVM和JVM的关系可以理解为GraalVM是一种新型的Java虚拟机,它提供了一种更高效、更快速的Java应用程序运行环境,可以帮助开发者提高应用程序的性能和启动速度
  • 缺点
    • 舍弃了 Java 的跨平台性,编译为本地执行文件,不同操作系统的服务器,编译出来的文件不一样,比如 windows 编译出来的文件,并不能在 Linux 系统运行,也就让 JAVA 丢失了平台无关性。
    • JAVA 设计之初,一次编译、到处运行是其最重要的特性,但是现在容器技术的出现,该特性显得很牵强。
    • 反射机制、CGLIB 动态代理这些和字节码打交道的机制,是在程序运行时动态调用,无法经过 AOT(提前编译-静态编译) 编译成原生代码,构建时还需要提供各种配置文件去适配
    • 目前该技术并未大面积使用,并不成熟

这篇关于走进GraalVM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/206865

相关文章

AIGC6: 走进腾讯数字盛会

图中是一个程序员,去参加一个技术盛会。AI大潮下,五颜六色,各种不确定。 背景 AI对各行各业的冲击越来越大,身处职场的我也能清晰的感受到。 我所在的行业为全球客服外包行业。 业务模式为: 为国际跨境公司提供不同地区不同语言的客服外包解决方案,除了人力,还有软件系统。 软件系统主要是提供了客服跟客人的渠道沟通和工单管理,内部管理跟甲方的合同对接,绩效评估,BI数据透视。 客服跟客人

【Linux】萌新看过来!一篇文章带你走进Linux世界

🚀个人主页:奋斗的小羊 🚀所属专栏:Linux 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 前言💥1、初识Linux💥1.1 什么是操作系统?💥1.2 各种操作系统对比💥1.3 现代Linux应用💥1.4 Linux常用版本 💥2、Linux 和 Windows 目录结构对比💥2.1 文件系统组织方式💥2.2

【python 走进NLP】两两求相似度,得到一条文本和其他文本最大的相似度

应用场景: 一个数据框里面文本,两两求相似度,得到一条文本和其他文本最大的相似度。 content source_id0 丰华股份军阀割据发生的故事大概多少w 11 丰华股份军阀割据发生的故事大概多少 22 丰华股份军阀割据发生的故事大概多少 33 丰华股份军阀割据发生的故事大概多少

【Python 走进NLP】NLP词频统计和处理停用词,可视化

# coding=utf-8import requestsimport sysreload(sys)sys.setdefaultencoding('utf-8')from lxml import etreeimport timetime1=time.time()import bs4import nltkfrom bs4 import BeautifulSoupfrom

【java 走进NLP】simhash 算法计算两篇文章相似度

python 计算两篇文章的相似度算法simhash见: https://blog.csdn.net/u013421629/article/details/85052915 对长文本 是比较合适的(超过500字以上) 下面贴上java 版本实现: pom.xml 加入依赖 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</a

【python 走进NLP】simhash 算法计算两篇文章相似度

互联网网页存在大量的重复内容网页,无论对于搜索引擎的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。最简单的文本相似性计算方法可以利用空间向量模型,计算分词后的文本的特征向量的相似性,这种方法存在效率的严重弊端,无法针对海量的文本进行两两的相似性判断。模仿生物学指纹的特点,对每个文本构造一个指纹,来作为该文本的标识,从形式上来

【python 走进NLP】文本相似度各种距离计算

计算文本相似度有什么用? 1、反垃圾文本的捞取 “诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。 2、推荐系统 在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。 3、冗余过滤 我们每天接触过量的信息,信息之间存在大量

【python 走进NLP】句子相似度计算--余弦相似度

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。 github 参考链接:https://github.com/ZhanPwBibiBibi/CHlikelihood # -*- coding: utf-8 -*-import jiebaimport numpy as npimpor

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

【python 走进pytotch】pytorch实现用Resnet提取特征

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂, 而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。 下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。 # -*- coding: utf-8 -*-import os