Tensorflow1架构内核和学习方法论

2023-10-13 23:50

本文主要是介绍Tensorflow1架构内核和学习方法论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概念简介

总体介绍

名词解释

疑问辨析

工程构建

代码生成

技术栈

模型类型

系统架构

分层架构

图控制

运行机制

会话机制 

队列

运行模型

本地模式

分布式模式

技能方法论 

发现领域模型

挖掘系统架构

细节是魔鬼

适可而止

发现她的美

形式化

独乐乐,不如众乐乐

更新知识

 专攻术业


概念简介

总体介绍

TensorFlow的主要作用是构建和训练复杂的机器学习模型,提供高效的并行计算能力,可视化训练过程,支持多种编程语言以及跨平台计算。这些特点使得TensorFlow成为目前炙手可热的深度学习框架之一。

TensorFlow是一个使用数据流图 (Dataflow Graph) 表达数值计算的开源软件库。它使用节点表示抽象的数学计算,并使用 OP 表达计算的逻辑;而边表示节点间传递的数据流, 并使用 Tensor 表达数据的表示。数据流图是一种有向无环图 (DAG),当图中的 OP 按照特定的拓扑排序依次被执行时,Tensor 在图中流动形成数据流,TensorFlow 因此而得名。

名词解释

OP,即Operation,是计算图中的一个节点,代表一个计算单元。在深度学习中,OP可以表示数据流图中的操作,如卷积、池化等。

Kernel , 是 OP 在某种硬件设备的特定实现,它负责执行 OP 的具体运算,

疑问辨析

问:Kernel,又称核函数是不是就是卷积核的意思?

答:Kernel并不等同于卷积核。在计算机视觉和深度学习中,Kernel和卷积核虽然都用于实现某种特定运算,但它们并不完全相同。

Kernel是操作(如卷积、池化等)在某种硬件设备的特定实现,它负责执行操作的具体运算。在深度学习中,每个Kernel对应一个特定的卷积核或权重矩阵。

卷积核则是卷积神经网络中的特定计算单元,它与输入数据在卷积过程中进行特定运算,用于提取输入数据的特定特征。卷积核是一个小型矩阵,它可以遍历输入数据的每个局部区域,并对这些区域进行特定的运算(如点积)。

工程构建

TensorFlow 使用 C++11 语法实现, 所以要保证安装 C++ 编译器要支持 C++11。另外TensorFlow 使用 Bazel 的构建工具, 可以将其视为更高抽象的 Make 工具。不幸的是,Bazel 使用 Java8 实现,其依赖于 JDK。 因此在安装 Bazel 之前,还得需要事先安装 1.8 及以上版本的 JDK。

代码生成

在构建 TensorFlow系统时,Bazel 或 CMake会自动生成部分源代码。理解代码生成器 的输出结果,可以加深理解系统的行为模式。

技术栈

模型类型

在TensorFlow中,可以构建单层感知器模型、多层感知器模型和卷积神经网络模型等。

单层感知器:单层感知器是最简单的神经网络形式,它只有一层神经元,用于对输入数据进行二分类或回归分析。


多层感知器:多层感知器是单层感知器的扩展,它有多层神经元,每层神经元之间相互连接,形成一个层次结构。通过训练,多层感知器可以学习复杂的模式和特征,并用于解决更复杂的分类和回归问题。


卷积网络:卷积网络是一种特殊的神经网络,特别适合处理具有网格结构的数据,如图像。它的基本单元是卷积核或过滤器,这些卷积核可以在输入数据上滑动,并对覆盖区域进行局部连接和计算。卷积网络可以进行特征提取、空间变换、边缘检测等任务,它广泛用于计算机视觉和深度学习中。

系统架构

TensorFlow的系统结构以 C  API 为界,将整个系统分为前端和后端两个子系统。
1.    前端系统:提供编程模型,负责构造计算图;
2.    后端系统:提供运行时环境,负责执行计算图。

分层架构

TensorFlow的系统设计遵循良好的分层架构,后端系统的设计和实现可以进一步分解为4层。

1.    运行时:分别提供本地模式和分布式模式,并共享大部分设计和实现;
2.    计算层:由各个 OP  的 Kernel  实现组成;在运行时,Kernel  实现执行 OP  的具 
体数学运算;
3.    通信层:基于 gRPC  实现组件间的数据交换,并能够在支持 IB  网络的节点间实 
现 RDMA  通信;
4.    设备层:计算设备是 OP  执行的主要载体,TensorFlow  支持多种异构的计算设备 
类型。

TensorFlow 支持 Python 和 C++ 的编程接口较为完善,尤其对 Python 的 API 支持最为全面。并且,对其他编程语言的 API 支持日益完善。

图控制

在TensorFlow中,图控制包括图构建、图执行和图优化等方面。通过图控制,可以构建复杂的机器学习模型,并实现高效的并行计算和可视化训练过程。

运行机制

会话机制 

TensorFlow的会话(Session)机制是用于实际执行计算图的关键部分。计算图在构建阶段定义了模型的结构和计算关系,而会话则负责在执行阶段将这些计算分配给适当的计算设备(如CPU、GPU或TPU等)并执行它们。

会话的生命周期包括会话的创建,创建计算图,扩展计算图,执行计算图,关闭会话, 销毁会话的基本过程。在前端 Python  和后端 C++  表现为两套相兼容的接口实现。

队列

队列在模型训练中扮演重要角色,后文将讲述数据加载的 Pipeline,训练模型常常使用 RandomShuffleQueue 为其准备样本数据。为了提高 IO 的吞吐率,可以使用多线程,并发地将样本数据追加到样本队列中;与此同时,训练模型的线程迭代执行 train_op 时,一次获取 batch_size 大小的批次样本数据。显而易见,队列在 Pipeline  过程中扮演了异步协调和数据交换的功能,这给 Pipeline 的设计和实现带来很大的弹性空间。

运行模型

本地模式

图操作

分布式模式

图操作

技能方法论 

发现领域模型

领域模型是阅读代码最重要的一个目标,因为领域模型是系统的灵魂 所在。通过代码阅读,找到系统本质的知识,并通过自己的模式表达出来,才能真正地抓住系统的脉络,否则一切都是空谈。

例如,在阅读 TensorFlow 的 Python  实现的客户端代码时,理顺计算图的领域模型, 对于理解 TensorFlow  的编程模型,及其系统运行时的行为极其重要。

领域对象:Graph

挖掘系统架构

阅读代码犹如在大海中航行,系统架构图就是航海图。阅读代码不能没有整体的系统概念,否则收效不佳,阅读质量大大折扣。必须拥有系统思维,并明确目标。

细节是魔鬼

纠结于细节,将导致代码阅读代码的效率和质量大大折扣。例如,日志打印,解决某个 Bug  的补丁实现,某版本分支的兼容方案,某些变态需求的锤子代码实现等等。

阅读代码的一个常见的反模式就是「给代码做批注」。这是一个高耗低效,投入产出比极低的实践。一般地,越是优雅的系统,注释越少;越是复杂的系统,再多的注释也是于事无补。

适可而止

个人阅读代码的时候,函数调用栈深度绝不超过 3,然后使用抽象的思维方式思考底 层的调用。因为我发现,随着年龄的增长,曾今值得骄傲的记忆力,现在逐渐地变成自己的 短板。当我尝试追踪过深的调用栈之后,之前的阅读信息完全地消失记忆了

发现她的美

当我发现一个好的设计时,我会尝试使用类图,状态机,序列图等方式来表达设计;如果发现潜在的不足,将自己的想法补充进去,将更加完美。

形式化

当阅读代码时,有部分人习惯画程序的「流程图」。相反,我几乎从来不会画「流程图」, 因为流程图反映了太多的实现细节,而不能深刻地反映算法的本质。

我更倾向于使用「形式化」的方式来描述问题。它拥有数学的美感,简洁的表达方式, 及其高度抽象的思维,对挖掘问题本质极其关键。

例如,对于 FizzBuzzWhizz 的问题,相对于冗长的文字描述,或流程图,形式化的方式将更加简单,并富有表达力。以 3, 5, 7 为输入,形式化后描述后,可清晰地挖掘出问题的本质所在。

独乐乐,不如众乐乐

与他人分享你的经验,也许可以找到更多的启发;尤其对于熟知该领域的人沟通,如果是 Owner就更好了,肯定能得到意外的惊喜和收获。 

要让别人信服你的观点,关键是要给别人带来信服的理由。分享的同时,能够帮助锻炼自己的表达能力,这需要长时间的刻意练习。

使用图表来总结知识,一方面图的表达力远远大于文字;另外,通过画图也逼迫自己能够透彻问题的本质

更新知识

我们需要常常更新既有的知识体系,尤其我们处在一个知识大爆炸的时代。我痛恨那些信守教条的信徒

 专攻术业

人的精力是有限的,一个人不可能掌握住世界上所有的知识。与其在程序设计语言的 抉择上犹豫不决,不如透彻理解方法论的内在本质;与其在众多框架中悬而未决,不如付出实际,着眼于问题本身。总之,博而不精,不可不防

这篇关于Tensorflow1架构内核和学习方法论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/206712

相关文章

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert