利用Python分析金融交易中的滚动Z值

2023-10-13 23:20

本文主要是介绍利用Python分析金融交易中的滚动Z值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,在不断演变的证券交易领域,能够利用数据和统计学的力量提供重要的优势。无论是预测未来价格、分析市场趋势,还是简单地评估特定证券的波动性,数据驱动的见解已经改变了交易者对证券市场的处理方式。这就是Z值的用途,它是一种统计指标,可以为交易者提供有关证券的相对优势和定位的宝贵见解。

想象只需通过观察证券的历史价格和波动性,就能够简单地识别出证券何时可能被过度买入或卖出,这正是Z值可以提供的,本文将深入探讨如何利用Python(作为数据分析的强大工具)进行证券交易中的Z值计算和解读。

1.Z值介绍

Z值提供了一个数据点相对于均值的标准差距离的度量。在交易中,这可以帮助我们了解证券当前价格是否在统计上“正常”,或者是否为异常值。

如同表示正态分布的钟形曲线,大多数证券价格(假设它们服从正态分布,这是一个很大的假设,实际交易中通常并非如此)将位于中间附近。那些位于尾部,超出一定Z值(如1.5或-1.5)的证券,才会引起我们的兴趣。

图片

Z值公式:这是一个数学表示,详细说明了如何使用总体标准差对偏离均值的程度进行标准化。对于希望将证券价格相对于历史数据量化的交易者来说,这个方程式至关重要。

其中:

  • Z是Z值。

  • X是数据点的值。

  • μ是数据的平均值。

  • σ是标准差。

通过以Z值的视角分析股票价格,交易者可以识别潜在的买入/卖出机会。明显高于1.5的Z值可能表明该证券相对于其历史平均价格被高估,而明显低于-1.5的Z值可能表明相反情况。

2.获取数据和初步设置

在深入研究之前,装备正确的工具是至关重要的。通过导入相关的Python库,如用于获取证券数据的yfinance和用于可视化的matplotlib,可以确保一个顺利的开始。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt

为了评估证券的异常情况,接下来将目标锁定在一只特定的证券上——为了演示的目的,本文选择了“ASML.AS”。然后,我们使用yfinance库获取历史数据。

tickerSymbol = "ASML.AS"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2020-1-1', end='2023-12-25')

3.计算Z值

本文分析的核心是Z值公式,它有助于评估证券价格相对于其历史的“偏离程度”。针对多个滚动期来计算这个值,以捕捉短期和长期的异常情况。

rolling_mean = close_prices.rolling(window=period).mean()
rolling_std = close_prices.rolling(window=period).std()
z_scores = (close_prices - rolling_mean) / rolling_std

4. 使用信号可视化偏离

通过将滚动Z值与证券价格绘制在一起,我们可以了解证券行为“正常”的时间以及何时可能出现异常情况。特别是Z值超过±1.5的区域,这种视觉线索对于交易者非常重要。可以随意更改Z值的阈值。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt# 常量
Z_THRESH = 2
PERIODS = [30, 60, 90]
TICKER_SYMBOL = "ASML.AS"
START_DATE = '2020-1-1'
END_DATE = '2023-12-25'def fetch_data(ticker_symbol, start_date, end_date):"""Fetches historical data for a given ticker symbol."""ticker_data = yf.Ticker(ticker_symbol)return ticker_data.history(period='1d', start=start_date, end=end_date)def calculate_z_scores(close_prices, periods):"""Calculates Z-scores for given periods."""z_scores_dict = {}for period in periods:# 计算给定周期的滚动平均值rolling_mean = close_prices.rolling(window=period).mean()      # 计算给定周期的滚动标准差rolling_std = close_prices.rolling(window=period).std()       # 计算收盘价的Z值z_scores = (close_prices - rolling_mean) / rolling_std      # 将Z值存储在以周期为关键字的字典中z_scores_dict[period] = z_scoresreturn z_scores_dictdef plot_data(close_prices, z_scores_data):"""Plots close prices and z-scores."""   # 为收盘价和Z值创建子图fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(20, 8))   # 在第一个子图上绘制收盘价ax1.plot(close_prices.index, close_prices, label='Close Prices')for period, z_scores in z_scores_data.items():# 在第二个子图上绘制每个时期的Z值ax2.plot(z_scores.index, z_scores, label=f'Z-Scores {period} days', alpha=0.7)       # 如果周期是列表中的第一个,则在第一个子图上绘制买入/卖出信号if period == PERIODS[0]:buy_signals = (z_scores < -Z_THRESH)sell_signals = (z_scores > Z_THRESH)ax1.plot(close_prices[buy_signals].index, close_prices[buy_signals], 'o', color='g', label='Buy Signal')ax1.plot(close_prices[sell_signals].index, close_prices[sell_signals], 'o', color='r', label='Sell Signal')# 为收盘价子图设置y标签和图例ax1.set_ylabel('Close Prices')ax1.legend(loc="upper left")ax1.grid(True)# 在Z值子图上绘制表示Z值阈值的水平线ax2.axhline(-Z_THRESH, color='red', linestyle='--')ax2.axhline(Z_THRESH, color='red', linestyle='--')   # 设置Z值子图的Y标签和图例ax2.set_ylabel('Z-Scores')ax2.legend(loc="upper left")ax2.grid(True)# 为整个绘图设置主标题plt.suptitle(f'{TICKER_SYMBOL} Close Prices and Z-Scores {Z_THRESH} Treshold')# 显示图表plt.show()# 获取股票代码的历史数据
ticker_data = fetch_data(TICKER_SYMBOL, START_DATE, END_DATE)# 计算指定时期的Z值
z_scores_data = calculate_z_scores(ticker_data['Close'], PERIODS)# 绘制收盘价和Z值
plot_data(ticker_data['Close'], z_scores_data)

ASML.AS证券价格的变化与30天、60天和90天滚动Z值并列,绿色和红色标记分别表示基于Z值阈值的潜在买入和卖出点。

虽然Z值提供了一种数学方法来进行证券分析,但最重要的是要记住交易涉及众多因素。Z值可以是工具箱的一部分,但一定要将统计见解与全面的市场研究相结合。

 

这篇关于利用Python分析金融交易中的滚动Z值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/206579

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e