认清真相,脱离菜鸟!中级数据分析师,该有什么样的能力?

2023-10-13 21:20

本文主要是介绍认清真相,脱离菜鸟!中级数据分析师,该有什么样的能力?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“到底咋样算进阶?”是很多做数据的新人同学很疑虑的问题。网上的文章铺天盖地的都是“如何入门”,“如何快速入门”一类。可真正做上数据分析以后才发现:根本学的就是个屁。每天都在跑数,真正的算法工作离自己一万多里。所以到底前途是啥?

 

以上诸多疑虑,症结核心,在于:网上的文章大多基于课本来写。因为书本上都是第一章讲pycharm,anaconda,第二章讲pandas,第三章讲matplotlib,第四章讲numpy,第五章讲sklearn,所以作者们想当然地以为做数据分析就是第一步安装软件,第二步取数,第三步可视化,第四步机器学习模型,第五步业务跪倒在自己脚下俯首帖耳,说:数据分析真牛逼,快来驱动我……

醒醒了喂!


 

真正进入公司以后,就会发现,数据分析工作最大问题就是:存在感稀薄。数据驱动业务?那是:老板拿数据驱动业务。至于做数据的自己,在大部分公司就是打杂的。那些产品经理、运营、销售、策划心中,都觉得自己可懂分析了,就差一个跑数的。做数据的你就安心跑数好了。

而且,做业务的尤其喜欢说:“我看朋友圈的数据分析文章,我都会了,可我司数据分析师连大数据精准推荐,这么简单的事都搞不出来,都怪他们!”——做数据的不但工作打杂,还容易背锅。

所以,真在企业里上过班就会明白:想要摆脱窘境,真正要干的就三件事:

1、争取独立项目的机会,不当扫厕所的

2、清晰工作范围和边界,不背无妄之锅

3、展现工作效果与成绩,争取内部认可

 

有了这三个,才能让自己多立功,少背锅。这三点,才是从等着别人来要数的新手,向独当一面的成熟数据分析师的真正转变。具体怎么干,下边简单说一说。

 1 

如何争取独立项目

新人在学习阶段,都练习过网上的所谓“项目”,什么泰坦尼克、淘宝购物、某国信用卡之类。真实企业项目和这些网红项目最大区别在于:没人给你安排好做什么。如果干坐着等别人安排,就等着接电话:“这个数据老板要,下班以前要给到”。

 

想争取项目,陈老师之前有一篇详细的分享,在文末可见。这里想强调的是:一定要做好常规数据需求统计。想要在琐碎、零散、日常的工作中发现机会,靠的是细心的分析,而不是别人的施舍(如下图)。

基于需求统计表,能主动发现:

  • 哪些部门需求多?

  • 哪些需求要的急?

  • 哪些是从0到1起步?

  • 哪些需要复杂分析支持?

  • 哪些能用固定工具承接?

  • 哪些是老板的关注点?

 

这样就能摆脱遇到事只会傻憨憨问业务,结果被一句“关你屁事”顶回来的尴尬。找到意愿合作的部门,找到有价值的合作项目,都靠这样一点点沉淀,而不是从天上掉下来的。

 2 

如何清晰工作边界

清晰工作边界就是为了不背锅,没有其他缘由。

要牢记三清原则:

1、有数据还是没数据,要分清!

2、有标准还是没标准,要分清!

3、有方案还是没方案,要分清!

没有数据,无法分析。这是废话,但是恰恰最容易被忽视。在业务眼里,永远是:“我们的数据很大呀,而且都在哪里,就差个人来分析了”——一大坨屎,也是很大。业务是不会去扣数据细节的。事先不做好功课,事后面对一堆脏数据,巧妇难为无米之炊。

 

没有标准,无法评估。这也是一句废话。但是业务口中,经常是:“我就是要增加销量呀;我就是要提升活跃呀;这是老板说的要做,你管他那么多呢”。看似有目标,实则不具体。这时候如果不主动提醒,事后想再补充。就变成:说业务好,自己就是应声虫,对老板没意义;说业务不好,等着被业务喷死。进退两难。

 

没有方案,预测不准。这也是一句废话。投100的券和投10元券转化率能一样吗。好文案和差文案转化率能一样吗。脱离业务方案去谈预测、谈走势,都是夸夸奇谈。可偏偏教预测的书本都讲的是数据处理方法,很少讲如何结合实际,因此这一步也经常被忘掉。

以上三原则,是很多新人碰得头破血流以后总结的要点,字字带血。然而这也是新人最容易忘记的点。因为在自学阶段都是对着现成的数据集,现成的背景,现成的书去练,从来没人教怎么具体问题、具体沟通。就容易在干活时出问题。

 3 

如何展示工作成绩

数据分析的成果,就类似“哥伦布立鸡蛋”的故事——你说出口之前,大家都觉得不可能;你说出口以后,大家都说:我早想到了!这个很简单。所以单纯地在口头报几个数、提几条建议,完全不能证明这是自己的成绩。反而把业务教聪明了,以后的分析需求越来越复杂,越来越难搞。

因此,才有数据成果三标准:

1、输出数量可量化

2、结果可重复使用

3、过程封装看不懂

具体如下图所示:

 

想实现这三标准,单纯地靠写ppt,做口头汇报是肯定不行的。上数据产品势在必行。但想从零散取数,直接升级到一套完整的数据产品也是不现实的——业务等不了那么久,也不会停下日常工作。因此要有产品升级的意识,逐步地向完整产品过度。

我们积累的技术能力,是在这个场合用的。在时间、数据质量允许范围内:

1、能做报表的,不用临时取数

2、能上系统的,不用手工报表

3、能上体系的,不用孤立指标

4、能上模型的,不用业务规则

5、能固化规则的,不每次跑数

6、能固化标准的,不专题分析

总之一步步升级,手工操作、临时操作、个性化操作越来越少。产品功能越来越丰富,预测精度越来越高,查询速度越来越快,定位问题方法越来越简单,我们的价值就越大。

 

以上,是从菜鸟到中级的破局思路。啥时候算修炼成功?

往简单说,就是独挡一面。往细了说:

  • 在成果上,中级数据分析师能独立解决问题。

  • 在工作中,中级数据分析师能应对业务的“蠢问题”。

  • 在方法上,中级数据分析师能沉淀经验,而不是到处抄。

 

具体的表现是:等你在面试或者年终述职的时候,不需要傻憨憨地说:我做了好多分析。而是很清晰的讲出来自己的工作数量、输出产品、分析模型的时候,就算成功了。

 

然而遗憾的是,很多新人注意不到这些问题。

比起在具体问题上深入讨论,他们更喜欢发牢骚,抱怨自己的公司太low,如果能进入头腾阿这种大厂,肯定是山清水秀,鸟语花香;

比起深入思考业务场景和业务流程,他们更喜欢看“底层逻辑”“核心模型”,并且孜孜不倦的在网上找《国家权威认证方法》。

比起解决问题,他们更喜欢人手一本《21天0基础精通机器学习》,认为学了这个头腾阿的某一家就会看上他了——总之,牢骚太多,细节太少,想进步,肯定很难了。

 

能独立面对并解决问题以后,我们能探讨一个10人部门以上的,领导级的高级数据分析师需要什么技能了。在成果上,高级的数据分析师不仅要解决问题,更得明白“要做成什么样”主动引导业务发展。

在工作中,本文仅仅探讨了业务犯蠢的时候会怎样,还有一种就是:“不蠢,但是坏!”高级的数据分析师有能力影响决策,就得面对更多坏人,有能力斗智斗勇。如果大家感兴趣,本篇集齐60在看,我们下一篇来分享。

原创精选:

  • 高级的数据分析,长啥样?

  • 如何做一个优秀的数据分析项目?

  • 专员=砖员?如何找到第一个数据分析项目

想看更多基础分析方法与业务结合的分析案例?来了解一下陈老师的《商业分析全攻略》视频课程。

《商业分析全攻略》

长按扫描二维码
了解陈老师的视频课程

还可加入学员群

享受陈老师一对一咨询服务

点击“阅读原文”试听视频课程

这篇关于认清真相,脱离菜鸟!中级数据分析师,该有什么样的能力?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/205957

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者