一辆轿车和两只山羊问题解析(概率)

2023-10-13 20:50

本文主要是介绍一辆轿车和两只山羊问题解析(概率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一辆轿车和两只山羊问题解析(概率)

 

有些看似简单的问题,其实不简单,甚至让人感到反直觉。需要耐心细致的分析对比思考。

 

   “玛丽莲问题”(也称为三扇门问题、蒙提霍尔问题)问题如下:台上有三个门,一个后边有汽车,其余后边是山羊。主持人让你任意选择其一。然后他打开其余两个门中的一个,你看到是山羊。这时,他给你机会让你可以重选,也就是你可以换选另一个剩下的门。那么,你换不换?

  玛丽莲的答案是应该换,但是很多读者不同意。玛丽莲在下一期专栏给出一个事件列表说明她的道理,但反对声更多更大了。在几千封读者来信中,反对者达九成。其中有全国健康机构的统计学家,国防情报中心的副主任,甚至著名的美籍匈牙利数学家保罗.埃尔笛希(Paul Erdos)也是反对者之一。 

   涉及到概率的问题,如果想解释得通俗易懂,让非专业人士也能很容易明白,那就不适合引入太多的专业术语和概念。为了方便大家的理解,我的回答不会涉及任何特别专业的词汇。

我们换种说法,先玩三个游戏:

游戏1.有三个盒子,一个盒子里有钻石,其它两个什么都没有。你先选了一个盒子,放在你的书包里。主持人把另外两个放在他的书包里。这时候问你,要不要用你的书包换主持人的书包?

分析:你的书包只有一个盒子,主持人的书包有两个,很显然,主持人的书包里有钻石的可能性更大。所以应该选择换!

游戏2.有三个盒子,一个盒子里有钻石,其它两个什么都没有。你先选了一个盒子,放在你的书包里。主持人把另外两个放在他的书包里。然后主持人从他的书包里扔掉一个没有钻石的盒子。这时候问你,要不要用你的书包换主持人的书包?

分析:主持人从他的书包里扔掉一个没有钻石的盒子,这个行为并不会改变书包里有钻石的概率。所以既然游戏1要换,那么游戏2同样要换。

游戏3.有三个盒子,一个盒子里有钻石,其它两个什么都没有。你先选了一个盒子。然后主持人从另外两个盒子中扔掉一个没有钻石的盒子。这时候问你,要不要用你的盒子换剩下的那个盒子?

分析:游戏2相对于游戏3,唯一的不同是增加了“书包”这个概念,但其实有没有把盒子装入书包,并不会对结论产生影响,本质上游戏3和游戏2是同一个游戏。所以游戏3同样要换。

而游戏3就是题目中所描述的蒙提霍尔问题。因此结论只有一个字:换。

 

再换一种图示方法:



附录

概率的定义

概率的统计定义通常可以这样叙述:在相同的条件下做大量的重复试验,一个事件出现的次数k和总的试验次数n之比,称为这个事件在这n次试验中出现的频率。当试验次数n很大时,频率将“稳定”在一个常数附近。n越大,频率偏离这个常数大的可能性越小。这个常数称为该事件的概率。

 

“三门问题”的视频(费曼解释)
https://www.bilibili.com/video/BV1Pr4y1P75x/?spm_id_from=333.788.recommend_more_video.0

 

Python模拟解决三门问题

通过程序模拟三门问题,并重复进行大量测试,统计换门与不换门的情况下,赢得汽车的概率。

#检测若输入的模拟次数不是整数,提示重新输入
while True:try:total = input("请输入模拟次数:")total=int(total)break   #若输入的正确,则退出,错误执行except下面代码except:print('您输入的内容不规范,请重新输入:')
#根据你输入的保存在total中次数,重复进行大量测试,统计换门与不换门赢得汽车的概率
a=b=c=d=e=f=0.00
x=0
from random import randint
list=["sheep1","sheep2","car"]
tuple=("yes","no")
while x!=total:t=randint(0,2)i=randint(0,1)if list[t]=="car":if tuple[i]=="yes":a+=1else:b+=1elif list[t]=="sheep1":if tuple[i]=="yes":c+=1else:d+=1elif list[t]=="sheep2":if tuple[i]=="yes":e+=1else:f+=1x+=1
print("总次数为%d"%(total))
print("换%d" %(a+c+e),"不换%d" %(b+d+f))
print("不换赢的概率为%.2f%%"%(b/(c+b+e)*100))
print("换赢的概率为%.2f%%"%((c+e)/(c+b+e)*100))

运行之,参见下图:

由模拟结果可以看出,换门赢的概率大约是不换赢的概率的2倍,所以换门能增加参赛者赢得汽车的概率。

 

这篇关于一辆轿车和两只山羊问题解析(概率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/205795

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决