泰尔指数案例分析

2023-10-13 17:50
文章标签 分析 案例 指数 泰尔

本文主要是介绍泰尔指数案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泰尔指数是一种衡量‘不平均’的指数,比如用于衡量‘贫富差异’,也或者衡量大气污染的水平是否一致,二氧化碳排放水平差异情况等。泰尔指数的数学原理是‘熵’,‘熵’是一种衡量数据‘有序性’的指标,当‘熵’值越大时,数据越无序,那么意味着‘不平均’情况越严重。

泰尔指数正式分析前需要了解两个基本的名词,如下:

结合具体的泰尔指数计算原理,其可分为四种类型的泰尔指数,分别是T指数、L指数、GE1指数和GE0指数,四种类型的指数在原理上稍有区别,但应用上均是对‘不平均’情况的衡量,其中T指数使用最多。比如研究我国贫富差距‘收入不均’问题,但是每个省的GDP或者人口基数并不一致,即计算泰尔指数的时候,如果某个省GDP更多,或者人口更多,那么其对于整体收不均的影响作用会更高。T指数正是基于GDP作为权重,GDP越大时该省对于整体泰尔指数的影响会越大;类似地,也可使用人口作为权重,当人口越多时,该省对于泰尔指数的影响会越大,L指数正是基于人口作为权重进行计算。基于上述原理,在计算T指数或L指数时,通常需要提供类似GDP和人口共两项数据。

如果提供的原始数在为人均GDP一项(没有GDP和人口两项数据),那么此时则需要使用GE1或GE0指数,其只需要提供人均GDP这样的1项数据进行计算,GE1和GE0是基于广义熵概念计算得到,二者区别在于广义熵时的alpha值,GE1时alpha值为1,GEO时alpha值为0,GE1和GE0指数使用相对较少。

除上述外,还需要理解的一个名词为Group项,计算泰尔指数时,很可能出现‘层次聚集’数据,比如中国包括31省,每个省包括很多个市,每个市包括很多个县,每个县还可包括很多个乡镇。带有此类聚集特征的数据,即具有Group项,比如省份、市、县均为Group项。当数据完全没有Group项时,比如直接31个省(共31行数据)的GDP和人口,计算泰尔指数,此时则称为普通泰尔指数。比如数据包括31个省,每个省比如有6个市,共计31*6=186行数据时(省-》市),此时具有1个Group项即省,此时称为一阶泰尔指数。比如数据包括31个省,每个省比如有6个市,每个市有10个县,那么此处有2个Group项(省-》市-》县),分别是省和市,省的层级最高即Group1,市的层级稍低为Group2,此时计算的泰尔指数称为二阶泰尔指数。

理论上还会有三阶泰尔指数、四阶泰尔指数等,实际情况中由于数据的可获取性及研究目的需要等,实际使用极少,通常情况下一阶泰尔指数较多。SPSSAU默认提供最多两个Group项即最多二阶泰尔指数,如果两个group项均不放入,那么为普通泰尔指数,如果放入1个Group项那么为一阶泰尔指数,如果放入2个Group项则为二阶泰尔指数。

与此同时,在计算泰尔指数时,很多时候需要对比不同年份数据情况,当数据中包括多个年份时,比如最近10年数据,且31个省,每省6个市,共计为10*31*6=1860行时,可将年份进行设置,系统会自动遍历计算出分别10年的泰尔指数。


泰尔指数案例

1 背景

当前有中国2012 ~ 2021共计10年各省的GDP数据、人口和人均GDP数据,将省分成七大区域(分别是华北、东北、华东、华中、华南、西南、西北),分析中国人均GDP收入的差异情况,对比各大区域的具体差异情况等,部分数据如下图所示:

明显地,数据中包括1个Group项即‘区域’,并且为10年,共计为310行数据,本案例为一阶泰尔指数,并且为10年分别进行计算对比。如果省份再继续往下细分为市,那么省就是另外一个Group即二阶泰尔指数。

2 理论

如果计算泰尔指数时,涉及到一阶或者二阶,即当提供的数据具有聚集性时,那么泰尔指数则会进行拆分为比如组内和组间指数。具体说明如下表格:

如果是普通泰尔指数,那么直接就只得到1个泰尔指数值。如果是一阶泰尔指数,比如本案例为‘区域-》省’这样的数结构时,泰尔指数可具体细分为组内TWR和组间TBR,比如本案例分为7个区域,那么7个区域之间的收不均则叫组间TBR,每个区域(比如华北区域)内各个省之间的差异则叫组内TWR。如果是二阶泰尔指数,比如‘区域-》省-》市’这样的数据结构,各个区域之间的差异称为‘组间TBR’,各个省之间的差异称为‘省间TBP’,以及各个省包括很多个市,比如浙江省包括10个市,那么此10个省之间的差异,则称为‘组内TWP’即省内差异情况。

3 操作

本例子中操作截图如下:

  • 泰尔指数类型选择最常用的T指数,T指数时要求提供GDP和人口共两项数据,以及本案例包括10年,因而将年份放入对应框中。
  • 本案例为一阶泰尔指数(区域-》省)结构,Group项为区域,因而将其放入Group1项中。需要提示的是,案例数据最细粒度单位为省,此处省并不Group项。

4 SPSSAU输出结果

泰尔指数模型输出泰尔指数分解和贡献值两类结果指标,并且以图形进行展示,说明如下:

当‘普通泰尔指数’即没有Group项时,仅展示1个泰尔指数值。如果是一阶或者二阶泰尔指数,则会涉及到泰尔指数分解,以及各Group项对应的泰尔指数,以及各Group项时贡献值情况。本案例数据为一阶泰尔指数,因而会输出泰尔指数分解结果,Group项时泰尔指数结果。

泰尔指数的理解较为简单,但其计算公式相对复杂,为更好地理解泰尔指数原理,下述以一阶泰尔指数的计算公式为便进行说明。

上述四个式子中,T表示整体泰尔系数,Ti表示第i个区域的泰尔系数,TWR表示组内泰尔系数即区域内部泰尔系数,TBR表示组间泰尔系数即区域之间泰尔系数。Ln表示取对数的意思,各个符号说明如下:

  • i: 区域的编号
  • j: 省的编号
  • Y:GDP加总
  • Yi: 某区域gdp
  • Yij:某区域某省gdp
  • N:人口加总
  • Ni: 某区域人口
  • Nij:某区域某省人口

5文字分析

本案例时泰尔指数分为TWR和TBR,TWR表示组内泰尔系数即各个区域内部的贫富差异(T是泰尔指数的简写,W是within即组内的简写,R是区域Region的简写),TBR表示组间泰尔系数即区域与区域之间的贫富差异情况(T是泰尔指数的简写,B是between即组间的简写,R是区域Region的简写)。整体上看,各个年份上,整体泰尔指数变化不大,意味着各年份对比来看,贫富差异并没有明显的变化,从2016年起泰尔系数稍有减少,意味着贫富差异现象整体上有着微弱的减少趋势。TWR和TBR对比上,TWR相对明显更高,意味着当前的贫富差异主要是体现在区域与区域之间,而区域内部的贫富差异相对较小。泰尔系数分解可见下图。

特别提示:

泰尔指数是基于熵值原理进行计算,泰尔系数的大小并无绝对意义,其只有相对大小意义,并不能说3就比0.1绝对更高,而应该站在同一对比水平上进行对比。

具体针对各个区域上看,整体对比七大区域的贫富差异情况可知,整体上看,华北地区的贫富差异明显最高,泰尔系数基本均在0.1或者以上,意味着华北地区当前的贫富差异现象相对明显,可能由于北京作为国家行政中心极强,但华北的基它地区,比如河北、山西、内蒙古等省市的收入明显更低导致。接着,华南和华东地区也有着较强的贫富差异现象,但比起华北来看还是较弱。西北地区和西南地区这两个地区贫富差异现象较弱,另外东北地区和华中地区的贫富现象相对最低,意味着该两个地区的人均收水平相对更加均衡。

除了分析各个区域的泰尔指数得到贫富差异情况外,还可分析各个区域对于整体泰尔指数的影响作用情况即贡献值分析。

上表格展示各个区域泰尔指数的贡献情况,本案例数据使用泰尔T指数,其基于GDP作为贡献值大小标准。因而当某区域的GDP越高时其对整体泰尔指数(即整体贫富差异)的作用力度越大。上表格和下图可以看到,整体上看,华东地区的贡献值相对最高,这是由华东地区包括浙江、江苏、山东等经济大省决定。而华中、华北、华南对于整体贫富差异的影响作用力度较高,西南地区次之,东北和西北这两个地区对于泰尔指数的作用力度相对最小。

6 剖析

泰尔指数分析涉及以下几个关键点,分别如下:

  • 特别注意正确的数据格式。比如是‘省-》市’数据,即最小粒度单位是市,那么有两列分别标识省和市,但省才是聚集性group。如果有多年数据,那么其仅仅是重复,行数成年份倍数增长而已。
  • 泰尔指数包括四种类型,T指数、L指数、GE1和GE0,T指数和L指数时,需要传入比如GDP和人口这两项数据,因为衡量不平均是由人均GDP决定,T指数计算贡献值时使用GDP这样的数据,L指数计算贡献值时使用L指数这样的数据,其中T指数使用最多。GE1和GE0这两个指数使用相对较少,其利用广义熵进行计算,而且其要求传入的数据为比如人均GDP这1个数据,GE1时贡献值是由group内样本个数及数据大小共同决定,GE0时贡献值是由group内样本个数决定。

这篇关于泰尔指数案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/204894

相关文章

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用