一张图看明白Self-Attention机制

2023-10-13 17:20

本文主要是介绍一张图看明白Self-Attention机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

镇楼图

[)(E:\prj_image\attention\1.gif)]

Illustrated: Self-Attention

A step-by-step guide to self-attention with illustrations and code


这篇文章非常通俗易懂,虽然是英语,很容易就能够看懂,我就不给大家翻译了。我看了很多self-attention的内容,目前来说这篇文章写的非常清晰,所以我搬到了CSDN上,能够帮助更多人理解Self_Attention。

原文外网博文地址:Illustrated: Self-Attention


文章目录

  • 镇楼图
  • Illustrated: Self-Attention
    • 1. Illustrations
    • 2. Code

Transformer-based architectures, which are primarily used in modelling language understanding tasks, eschew recurrence in neural networks and instead trust entirely on self-attention mechanisms to draw global dependencies between inputs and outputs

1. Illustrations

The illustrations are divided into the following steps:

  1. Prepare inputs
  2. Initialise weights
  3. Derive key, query and value
  4. Calculate attention scores for Input 1
  5. Calculate softmax
  6. Multiply scores with values
  7. Sum weighted values to get Output 1
  8. Repeat steps 4–7 for Input 2 & Input 3

Step 1: Prepare inputs


We start with 3 inputs for this tutorial, each with dimension 4.

Input 1: [1, 0, 1, 0] 
Input 2: [0, 2, 0, 2]
Input 3: [1, 1, 1, 1]

Step 2: Initialise weights

Every input must have three representations (see diagram below). These representations are called key (orange), query (red), and value (purple). For this example, let’s take that we want these representations to have a dimension of 3. Because every input has a dimension of 4, each set of the weights must have a shape of 4×3.

Note
We’ll see later that the dimension of value *is also the output dimension.


To obtain these representations, every input (green) is multiplied with a set of weights for keys, a set of weights for querys (I know that’s not the correct spelling), and a set of weights for values. In our example, we initialise the three sets of weights as follows.

Weights for key:

[[0, 0, 1],[1, 1, 0],[0, 1, 0],[1, 1, 0]]

Weights for query:

[[1, 0, 1],[1, 0, 0],[0, 0, 1],[0, 1, 1]]

Weights for value:

[[0, 2, 0],[0, 3, 0],[1, 0, 3],[1, 1, 0]]

Notes
In a neural network setting, these weights are usually small numbers, initialised randomly using an appropriate random distribution like Gaussian, Xavier and Kaiming distributions. This initialisation is done once before training.

Step 3: Derive key, query and value

Now that we have the three sets of weights, let’s obtain the key, query and value representations for every input

Key representation for Input 1:

               [0, 0, 1]
[1, 0, 1, 0] x [1, 1, 0] = [0, 1, 1][0, 1, 0][1, 1, 0]

Use the same set of weights to get the key representation for Input 2:

               [0, 0, 1]
[0, 2, 0, 2] x [1, 1, 0] = [4, 4, 0][0, 1, 0][1, 1, 0]

Use the same set of weights to get the key representation for Input 3:

               [0, 0, 1]
[1, 1, 1, 1] x [1, 1, 0] = [2, 3, 1][0, 1, 0][1, 1, 0]

A faster way is to vectorise the above operations:

               [0, 0, 1]
[1, 0, 1, 0]   [1, 1, 0]   [0, 1, 1]
[0, 2, 0, 2] x [0, 1, 0] = [4, 4, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 3, 1]

Let’s do the same to obtain the value representations for every input:

               [0, 2, 0]
[1, 0, 1, 0]   [0, 3, 0]   [1, 2, 3] 
[0, 2, 0, 2] x [1, 0, 3] = [2, 8, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 6, 3]


and finally the query representations:

               [1, 0, 1]
[1, 0, 1, 0]   [1, 0, 0]   [1, 0, 2]
[0, 2, 0, 2] x [0, 0, 1] = [2, 2, 2]
[1, 1, 1, 1]   [0, 1, 1]   [2, 1, 3]

Notes
In practice, a bias vector may be added to the product of matrix multiplication.

Step 4: Calculate attention scores for Input 1


To obtain attention scores, we start with taking a dot product between Input 1’s query (red) with all keys (orange), including itself. Since there are 3 key representations (because we have 3 inputs), we obtain 3 attention scores (blue).

            [0, 4, 2]
[1, 0, 2] x [1, 4, 3] = [2, 4, 4][1, 0, 1]

Notice that we only use the query from Input 1. Later we’ll work on repeating this same step for the other querys.

Note
The above operation is known as dot product attention, one of the several score functions. Other score functions include scaled dot product and additive/concat.

Step 5: Calculate softmax
在这里插入图片描述Take the softmax across these attention scores (blue).

softmax([2, 4, 4]) = [0.0, 0.5, 0.5]

Note that we round off to 1 decimal place here for readability.

Step 6: Multiply scores with values

The softmaxed attention scores for each input (blue) is multiplied by its corresponding value (purple). This results in 3 alignment vectors (yellow). In this tutorial, we’ll refer to them as weighted values.

1: 0.0 * [1, 2, 3] = [0.0, 0.0, 0.0]
2: 0.5 * [2, 8, 0] = [1.0, 4.0, 0.0]
3: 0.5 * [2, 6, 3] = [1.0, 3.0, 1.5]

Step 7: Sum weighted values to get Output 1

Take all the weighted values (yellow) and sum them element-wise:

  [0.0, 0.0, 0.0]
+ [1.0, 4.0, 0.0]
+ [1.0, 3.0, 1.5]
-----------------
= [2.0, 7.0, 1.5]

Step 8: Repeat for Input 2 & Input 3

Now that we’re done with Output 1, we repeat Steps 4 to 7 for Output 2 and Output 3. I trust that I can leave you to work out the operations yourself 👍🏼
在这里插入图片描述

2. Code

Here is the code in PyTorch 🤗, a popular deep learning framework in Python. To enjoy the APIs for @ operator, .T and None indexing in the following code snippets, make sure you’re on Python≥3.6 and PyTorch 1.3.1. Just follow along and copy-paste these in a Python/IPython REPL or Jupyter Notebook.

Step 1: Prepare inputs

import torchx = [[1, 0, 1, 0], # Input 1[0, 2, 0, 2], # Input 2[1, 1, 1, 1]  # Input 3]
x = torch.tensor(x, dtype=torch.float32)

Step 2: Initialise weights

w_key = [[0, 0, 1],[1, 1, 0],[0, 1, 0],[1, 1, 0]
]
w_query = [[1, 0, 1],[1, 0, 0],[0, 0, 1],[0, 1, 1]
]
w_value = [[0, 2, 0],[0, 3, 0],[1, 0, 3],[1, 1, 0]
]
w_key = torch.tensor(w_key, dtype=torch.float32)
w_query = torch.tensor(w_query, dtype=torch.float32)
w_value = torch.tensor(w_value, dtype=torch.float32)

Step 3: Derive key, query and value

keys = x @ w_key
querys = x @ w_query
values = x @ w_valueprint(keys)
# tensor([[0., 1., 1.],
#         [4., 4., 0.],
#         [2., 3., 1.]])print(querys)
# tensor([[1., 0., 2.],
#         [2., 2., 2.],
#         [2., 1., 3.]])print(values)
# tensor([[1., 2., 3.],
#         [2., 8., 0.],
#         [2., 6., 3.]])

Step 4: Calculate attention scores


attn_scores = querys @ keys.T# tensor([[ 2.,  4.,  4.],  # attention scores from Query 1
#         [ 4., 16., 12.],  # attention scores from Query 2
#         [ 4., 12., 10.]]) # attention scores from Query 3

Step 5: Calculate softmax

from torch.nn.functional import softmaxattn_scores_softmax = softmax(attn_scores, dim=-1)
# tensor([[6.3379e-02, 4.6831e-01, 4.6831e-01],
#         [6.0337e-06, 9.8201e-01, 1.7986e-02],
#         [2.9539e-04, 8.8054e-01, 1.1917e-01]])# For readability, approximate the above as follows
attn_scores_softmax = [[0.0, 0.5, 0.5],[0.0, 1.0, 0.0],[0.0, 0.9, 0.1]
]
attn_scores_softmax = torch.tensor(attn_scores_softmax)

Step 6: Multiply scores with values

weighted_values = values[:,None] * attn_scores_softmax.T[:,:,None]# tensor([[[0.0000, 0.0000, 0.0000],
#          [0.0000, 0.0000, 0.0000],
#          [0.0000, 0.0000, 0.0000]],
# 
#         [[1.0000, 4.0000, 0.0000],
#          [2.0000, 8.0000, 0.0000],
#          [1.8000, 7.2000, 0.0000]],
# 
#         [[1.0000, 3.0000, 1.5000],
#          [0.0000, 0.0000, 0.0000],
#          [0.2000, 0.6000, 0.3000]]])

Step 7: Sum weighted values

outputs = weighted_values.sum(dim=0)# tensor([[2.0000, 7.0000, 1.5000],  # Output 1
#         [2.0000, 8.0000, 0.0000],  # Output 2
#         [2.0000, 7.8000, 0.3000]]) # Output 3

Note
PyTorch has provided an API for this callenn.MultiheadAttention. However, this API requires that you feed in key, query and value PyTorch tensors. Moreover, the outputs of this module undergo a linear transformation.

这篇关于一张图看明白Self-Attention机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/204742

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

详解Spring中REQUIRED事务的回滚机制详解

《详解Spring中REQUIRED事务的回滚机制详解》在Spring的事务管理中,REQUIRED是最常用也是默认的事务传播属性,本文就来详细的介绍一下Spring中REQUIRED事务的回滚机制,... 目录1. REQUIRED 的定义2. REQUIRED 下的回滚机制2.1 异常触发回滚2.2 回

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不