cuML机器学习GPU库

2023-10-13 05:30
文章标签 学习 机器 gpu cuml

本文主要是介绍cuML机器学习GPU库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、开始安装

1、创建虚拟环境

2、激活该虚拟环境

3、安装cuML

4、安装ipykernel

5、在jupter上使用,所以需要配置一下新的内核

二、调试

1、原始机器学习库运行

2、cuml库运行


以下安装教程为基于Linux系统,cuda版本为11.3.109、驱动530.30.02

一、开始安装

1、创建虚拟环境
conda create -n rapids python=3.9
2、激活该虚拟环境
conda activate rapids
3、安装cuML

 安装官网:Installation Guide - RAPIDS Docs

pip install --default-time=300 --extra-index-url=https://pypi.nvidia.com cuml-cu11

到这里,我们就安装完成了。但是如果要使用jupter笔记本,我们继续安装。

4、安装ipykernel
 pip install ipykernel
5、在jupter上使用,所以需要配置一下新的内核
python -m ipykernel install --name rapids

如果安装错了运行如下命令删除内核

jupyter kernelspec remove rapids

安装后,刷新网页即可看见新的内核的jupter笔记本

至此,jupter笔记本的环境也安装好了。

二、调试

先安装基础的机器学习库

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
1、原始机器学习库运行
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import numpy as np
import timeX = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

2、cuml库运行

API查询链接: Welcome to cuML’s documentation! — cuml 23.08.00 documentation

点击右上角小放大镜,然后输入sklearn中KNN算法的API名称,即可有相关示例

from sklearn.model_selection import train_test_split
# from sklearn.neighbors import KNeighborsClassifier
from cuml.neighbors import KNeighborsClassifierfrom sklearn.metrics import accuracy_score
import numpy as np
import timeX = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

这篇关于cuML机器学习GPU库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201074

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU