python手记12 〖笨方法学python习题34〗

2023-10-13 04:20

本文主要是介绍python手记12 〖笨方法学python习题34〗,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有意见或其他问题可在下方写下评论或加QQ:1693121186
欢迎一起讨论技术问题!
代码如下:

animals = ['bear', 'python', 'peacock', 'kangaroo', 'whale', 'platypus']

注:这个习题没有他、代码。只有附加练习。

  1. 位置1的动物:在位置1的是第二只动物,是python。第二只动物在位置1,是python
  2. 第三只动物:第三只动物在位置2,是peacock(孔雀),在位置2的是第三只动物,是peacock(孔雀)。
  3. 第1只动物:第一只动物在位置0,是bear(熊)。在位置0的是第1只动物,是bear(熊)。
  4. 位置3的动物:在位置3的是第四只动物,是kangaroo(袋鼠)。第四只动物在位置3,是kangaroo(袋鼠)
  5. 第5只动物:第五只动物在位置4,是whale(鲸)。在位置四的是第5只动物,是whale(鲸)。
  6. 位置3的动物:在位置3的是第四只动物,是kangaroo(袋鼠)。第四只动物在位置3,是kangaroo(袋鼠)
  7. 第6只动物:第6只动物在位置5,是platypus(鸭嘴兽),在位置5的是第6只动物,是platypus(鸭嘴兽)
  8. 位置4的动物:在位置四的是第5只动物,是whale(鲸)。第五只动物在位置4,是whale(鲸)。

注:切记自己再演练一遍,或在python上试一遍。
说个小事情:对于编程,恒心是必须的,也希望各个程序员不要抄袭他人编下的代码。这样对所有人都不好,造成了你的依赖心,就会让祖国失去一位有志向的人呐!

**以下是序数的定义,链接:点击

汉语释义
表示次序的数目。汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。此外还有些习惯表示法,如:头一回、末一次、首次、正月、大女儿、小儿子。序数后边直接连量词或名词的时候,可省去“第”,如:二等、三号、四楼、五班、六小队、1949年10月1日等。
数学定义

序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。

这个定义从形式上看来是十分简单明了的,但在ZFC公理系统中不能证明它构成一个集合。事实上,{B|BA}是一个真类。因此,原来的那个定义是不成功的,必须修正,另走别的途径。设 α是一个良序集,ξ∈α,称S(ξ)={β∈α|β<ξ}为在良序集α中由ξ所生成的初始截段。

1923、1928年,J.冯·诺伊曼把序数定义为满足下述条件的良序集α:对于一切ξ∈α,S(ξ)=ξ。例如在集合9={0,1,2,…,8}中取一个元素2,S⑵={0,1}=2,9中任何其他元素也具有这个性质,所以9是一个序数。

集A称为归纳集,如果①═∈A,②只要α∈A就有α′=α∪{α}∈A。归纳集A的存在性是由无限公理保证的。A的一切归纳子集之交N称为自然数集,它是最小的归纳集。N是良序的,并且其中任一元素n的初始截段S(n)={0,1,2,…,(n-1)}=n,所以N是一个序数,这个序数通常用ω表示。N的每一个元素n都是序数,称为有限序数。有限序数以属于每一个归纳集作为特征。其他序数称为超限序数,ω就是最小的超限序数。
1937年R,M.鲁宾逊给出了序数的另一等价定义,良序集<;α∈>;是一个序数,若〈α,∈〉是传递集,即只要x∈α且y∈x就有y∈α,这些定义没有康托尔原来定义的缺点。

这是数学定义图

序数种类

第一种是0;第二种是某一序数α的后继α′=α∪{α},称为后继序数;其他序数属于第三种,称为极限序数。对于任何良序集A,必有一个且仅有一个序数α使A与α序同构,此时α称为A的序数,用凴 =α表示。任何两个具有相同序数的良序集,必定序同构,因此序数是同构良序集的共同特征,这正是康托尔序数概念的实质。

基数的定义

根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类。任意一个集合A所属的类就称为集合A的基数,记作|A|(或cardA)。这样,当A 与B同属一个类时,A与B 就有相同的基数,即|A|=|B|。而当 A与B不同属一个类时,它们的基数也不同。

如果把单元素集的基数记作1,两个元素的集合的基数记作2,等等,则任一个有限集的基数就与通常意义下的自然数一致 。空集的基数也记作0。于是有限集的基数也就是传统概念下的“个数”。但是,对于无穷集,传统概念没有个数,而按基数概念,无穷集也有基数,例如,任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集。不但如此,还可以证明实数集R与可数集的基数不同。所以集合的基数是个数概念的推广。

基数可以比较大小。假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。如果 a≤ β,但a≠β( 即A与B不对等 ),就称A的基数小于B的基数,记作a<β,或β>a。在承认选择公理的情况下,可以证明基数的三歧性定理——任何两个集合的基数都可以比较大小,即不存在集合A和B,使得A不能与B的任何子集对等,B也不能与A的任何子集对等。

基数可以进行运算 。设|A|=a ,|B|=β,定义 a+β=|{(a,0):a ∈ A} ∪ {(b,1):b ∈ B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

这是我从网上找出的,请各位自己看一下吧。

这篇关于python手记12 〖笨方法学python习题34〗的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200730

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(