稠密点云获取方法(二)

2023-10-13 00:30
文章标签 方法 获取 点云 稠密

本文主要是介绍稠密点云获取方法(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为高分辨率三维重建的方法之一,从单张图像生成稠密三维点云在计算机视觉领域中一直有着较高的关注度。

以下文献提出了一种针对二维和三维信息融合的方法以解决三维点云稀疏难以检测远处的目标的问题。

Multimodal Virtual Point 3D Detection

该文献提出一种将 RGB 传感器无缝融合到基于激光雷达的 3D 识别的方法。它采用一组二维检测来生成密集的三维虚拟点,以增强原本稀疏的三维点云。这些虚拟点与常规的激光雷达获得的原始点云一起自然地整合到任何标准的基于激光雷达的三维检测器中。由此产生的多模式检测器简单而有效。

在大规模的nuScenes数据集上的实验结果表明,该框架将强大的 CenterPoint 基线大幅提高了 6.6mAP,并超过具有竞争性的融合方法。

该方法的思路比较简单,具体如下。

该论文的思想借鉴了PointPainting,实际上是利用图像实例分割结果,对激光点云做了稠密化。

PointPainting是获得图像分割结果后,把点云投影到图像上,得到每个点对应的图像分割的label。

假设原来的点云是N×3,就多了一维图像分割的label,变成N×4,然后用常规的点云处理算法处理,基于Point、Voxel或BEV。

同样是将点云投影到图像上,这篇论文反其道行之。

作者提出点云的一个缺点是太稀疏了,比如一辆车上只有几个激光点打了上去,而图像像素是全都“打”了上去。所以提出了一种方法,根据稠密的像素稠密化点云。

其生成虚拟点的方法:

1)首先对与点云对应的二维RGB图像进行语义(实例)分割,将激光点投影到图像(二维RGB相机坐标内)上,这样图像上每个instance上都会有几个激光点投上去。注意:这里仅考虑位于前景点实体分割中的点。

2)然后,对每个instance内的像素进行随机采样K个点(图c红色点),与被激光点投影上的像素(图c黑色点)进行最近邻关联,根据最近的几个原始点云的深度插值出虚拟点的深度。

3)最后,根据联合标定阶段得到坐标系变换矩阵将这些点投影回激光坐标系,得到virual lidar points,同时这些虚拟点包含实体分割中的类别信息。这样就达到了点云稠密化的效果,然后使用现在流行的3D backbone点云处理算法进行处理。 

 上述生成虚拟点的依据可能是对于属于同一个前景目标中的点,其前景深度不会相差很大,所以可以用其周围点的深度信息来对虚拟点的深度信息进行补全。从而到达缓解点云稀疏性的目的。

相比于baseline CenterPoint,从以下述表格中可以看出,使用生成的虚拟点确实能够在一定程度上提高模型的检测性能。此外,相比于同样采用分割结果来进行多模态融合的PointPainting, 该方法也获得了更好的性能。

此外,作者还研究了实体分割精度对于检测性能的影响。

 文中通过使用降低输入分辨率模拟实体分割精度下降的方法,从文中可以看出,本文所提方法对于实例分割的精度还是具有较高的鲁棒性。

此外,作者还在文中提到,其在实验过程中验证了本文中所使用的基于邻近点进行深度估计的精度,平均误差在0.33m左右,可见在同一前景目标中,这种基于临近点的深度估计精度还是比较高的。

这篇关于稠密点云获取方法(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199502

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

2、PF-Net点云补全

2、PF-Net 点云补全 PF-Net论文链接:PF-Net PF-Net (Point Fractal Network for 3D Point Cloud Completion)是一种专门为三维点云补全设计的深度学习模型。点云补全实际上和图片补全是一个逻辑,都是采用GAN模型的思想来进行补全,在图片补全中,将部分像素点删除并且标记,然后卷积特征提取预测、判别器判别,来训练模型,生成的像

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

Android Environment 获取的路径问题

1. 以获取 /System 路径为例 /*** Return root of the "system" partition holding the core Android OS.* Always present and mounted read-only.*/public static @NonNull File getRootDirectory() {return DIR_ANDR