opencv使用滑条选择最佳加窗值(windowing:WW, WL)

2023-10-12 23:40

本文主要是介绍opencv使用滑条选择最佳加窗值(windowing:WW, WL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1、 本文介绍医学影像CT的DICOM文件的窗宽(Window Width,简写WW)窗位(Window Level,简写WL)与CT值(HU)的关系。

 比如 WW = 400,WL = 60,那么对应的CT(HU)范围为-140 ~ 260H ,即

WW = ( 260 - (-140) )= 400

WL = (260 + (-140))/ 2 =60

就是怎么计算而来的。

1.2、医学影像CT上,不同的部位比如心脏、骨组织,往往显示的是黑白色(即灰度),我们常常用合适范围的灰度值,来观察不同的CT效果。
在这里插入图片描述

import numpy as np
import cv2
import matplotlib.pyplot as plt
import SimpleITK as itk
import skimage.io as io
import sys, os nii_file = r'./Naso_GTV//train/1/data.nii.gz'
itk_img = itk.ReadImage(nii_file)
itk_hu_data = itk.GetArrayFromImage(itk_img)  # == img.get_fdata(), Hu datadef _img_transfor(itk_img, WW, WL):img_arr = itk.GetArrayFromImage(itk_img).astype(np.float32)img_arr = window_normalize(img_arr, WW, WL)# torch_itk = torch.from_numpy(img_arr)return img_arrdef window_normalize(img, WW, WL, dst_range=(0, 1)):"""WW: window widthWL: window leveldst_range: normalization range"""src_min = WL - WW/2src_max = WL + WW/2outputs = (img - src_min)/WW * (dst_range[1] - dst_range[0]) + dst_range[0]outputs[img >= src_max] = 1outputs[img <= src_min] = 0return outputs * 255# 创建窗口
cv2.namedWindow('windowing')
value = (0, 0)
def update(x):# 回调函数 更新value的值global valueWW_value = cv2.getTrackbarPos('WW', 'windowing')WL_value = cv2.getTrackbarPos('WL', 'windowing')value = (WW_value - 1024, WL_value - 1024)img = _img_transfor(itk_img, WW_value - 1024, WL_value - 1024)io.imsave("./io.png", img[83])png = cv2.imread("./io.png")cv2.imshow("windowing", png)print('Update Value, value ={}'.format(value))cv2.createTrackbar('WW','windowing',0,2048,update)
cv2.createTrackbar('WL','windowing',0,2048,update)cv2.setTrackbarPos('WW','windowing',350 + 1024)
cv2.setTrackbarPos('WL','windowing',40 + 1024)while(1):       # 等待按键按下k = cv2.waitKey(0)# 销毁窗口if k == 27:cv2.destroyAllWindows()break

在这里插入图片描述在这里插入图片描述

这篇关于opencv使用滑条选择最佳加窗值(windowing:WW, WL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199262

相关文章

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA