opencv使用滑条选择最佳加窗值(windowing:WW, WL)

2023-10-12 23:40

本文主要是介绍opencv使用滑条选择最佳加窗值(windowing:WW, WL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1、 本文介绍医学影像CT的DICOM文件的窗宽(Window Width,简写WW)窗位(Window Level,简写WL)与CT值(HU)的关系。

 比如 WW = 400,WL = 60,那么对应的CT(HU)范围为-140 ~ 260H ,即

WW = ( 260 - (-140) )= 400

WL = (260 + (-140))/ 2 =60

就是怎么计算而来的。

1.2、医学影像CT上,不同的部位比如心脏、骨组织,往往显示的是黑白色(即灰度),我们常常用合适范围的灰度值,来观察不同的CT效果。
在这里插入图片描述

import numpy as np
import cv2
import matplotlib.pyplot as plt
import SimpleITK as itk
import skimage.io as io
import sys, os nii_file = r'./Naso_GTV//train/1/data.nii.gz'
itk_img = itk.ReadImage(nii_file)
itk_hu_data = itk.GetArrayFromImage(itk_img)  # == img.get_fdata(), Hu datadef _img_transfor(itk_img, WW, WL):img_arr = itk.GetArrayFromImage(itk_img).astype(np.float32)img_arr = window_normalize(img_arr, WW, WL)# torch_itk = torch.from_numpy(img_arr)return img_arrdef window_normalize(img, WW, WL, dst_range=(0, 1)):"""WW: window widthWL: window leveldst_range: normalization range"""src_min = WL - WW/2src_max = WL + WW/2outputs = (img - src_min)/WW * (dst_range[1] - dst_range[0]) + dst_range[0]outputs[img >= src_max] = 1outputs[img <= src_min] = 0return outputs * 255# 创建窗口
cv2.namedWindow('windowing')
value = (0, 0)
def update(x):# 回调函数 更新value的值global valueWW_value = cv2.getTrackbarPos('WW', 'windowing')WL_value = cv2.getTrackbarPos('WL', 'windowing')value = (WW_value - 1024, WL_value - 1024)img = _img_transfor(itk_img, WW_value - 1024, WL_value - 1024)io.imsave("./io.png", img[83])png = cv2.imread("./io.png")cv2.imshow("windowing", png)print('Update Value, value ={}'.format(value))cv2.createTrackbar('WW','windowing',0,2048,update)
cv2.createTrackbar('WL','windowing',0,2048,update)cv2.setTrackbarPos('WW','windowing',350 + 1024)
cv2.setTrackbarPos('WL','windowing',40 + 1024)while(1):       # 等待按键按下k = cv2.waitKey(0)# 销毁窗口if k == 27:cv2.destroyAllWindows()break

在这里插入图片描述在这里插入图片描述

这篇关于opencv使用滑条选择最佳加窗值(windowing:WW, WL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199262

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意