有一个正整数N可以分解成若干个正整数之和,问如何分解能使这些数的乘积最大?

2023-10-12 20:40

本文主要是介绍有一个正整数N可以分解成若干个正整数之和,问如何分解能使这些数的乘积最大?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个题若无整数条件限制,其实答案是全部分解为e(2.71828的那个e)
拿到此题,想起了天平称小球问题:n 个球中有一个是轻的,试问:怎样用一个没有砝码的天平,用最少的次数找出是哪个球,请算出最少次数。这个题的答案是:当 log3(n)为整数时,最少称log3(n)次,否则,最少称(   [log3(n)]+1   )次。
于是乎,猜测本题应该是将N尽量分解为若干个3,直到不能分解出3,再做出适当的调整。

就本题而言,易知,N必为 3n型、3n+1型、3n+2型中的一种(由数论的基本知识知:一个数 mod q,所得数值必在0到q - 1之间),N为3n型数据时,直接全部分解为3;N为 3n+1型数据时,最后会出现4,对4不做分解;N为3n+2型数据时,最后会出现5,将5分解为3和2。而N能分解成[N/3]个3。

这个问题的证明如下:
https://www.zhihu.com/question/30071017/answer/257494547

这个问题终于能和学过的高数知识和不等式知识联系起来了偷笑大笑

代码如下:

#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;double f(int N); //分解N的函数 int main()
{int N;while (cin >> N && N){printf ("%f\n",f(N));}return 0;
}double f(int N) //易知,N必为 3n型、3n+1型、3n+2型中的一种(由数论的基本知识知:一个数 mod q,所得数值必在0到q - 1之间) 
{int k = N / 3; if (N == 1)return 1; if (N % 3 == 0) // 如果N为 3n型 数据 return pow(3, k); if (N % 3 == 1) //  如果N为 3n+1型 数据return 4.0 * pow(3, k - 1);else            //  如果N为 3n+2型 数据return 2.0 * pow(3, k);
}

这篇关于有一个正整数N可以分解成若干个正整数之和,问如何分解能使这些数的乘积最大?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198350

相关文章

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

最大流、 最小费用最大流终极版模板

最大流  const int inf = 1000000000 ;const int maxn = 20000 , maxm = 500000 ;struct Edge{int v , f ,next ;Edge(){}Edge(int _v , int _f , int _next):v(_v) ,f(_f),next(_next){}};int sourse , mee

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t