利用群论来研究魔方

2023-10-12 20:20
文章标签 研究 魔方 群论

本文主要是介绍利用群论来研究魔方,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章灵感来源于:

  • 魔方与群论(二)(交换子牛啤!) - 知乎
  • 并参考了:https://www.gap-system.org/Doc/Examples/rubik.html
  • 使用了这里的小程序:Cubie

先汇制一张,魔方图

               +--------------+|  1    2    3 ||  4  top    5 ||  6    7    8 |
+--------------+--------------+--------------+--------------+
|              |            8 |  8    5    3 |              |
|     left     |    front   9 |  9 right  13 |     rear     |
|              |           10 | 10   11   12 |              |
+--------------+--------------+--------------+--------------+|              ||    bottom    ||              |+--------------+      

这里做了几个简化

  • 同一个块的两个棱或三个角,不做区分,视为同一数字
  • 仅考虑顶部和右手边的图块,主要是顶部和8、9、10,这是我拼魔方经常研究的地方

这里仅研究,1-10 这10个块的还原方法

让我们参考 gap 的程序,来建立模型

创建一个群

gap> cube := Group((1,3,8,6)(2,5,7,4),(8,3,12,10)(5,13,11,9));
Group([ (1,3,8,6)(2,5,7,4), (3,12,10,8)(5,13,11,9) ])    
  • 这里通过Group构造了一个群,由置换构造而来的群
    • 比如:这里(1,3,8,6)的置换,表示顶部4个角块的一次置换
  • 所以这个群,只有两元素
    • 一个是(1,3,8,6)(2,5,7,4) 两个置换组合而成的TOP的转换,这里命名为 U ,(参考:魔方小站工具之魔方公式标记图解 )
    • 一个是(8,3,12,10)(5,13,11,9),两个置换组合而成的RIGHT的转换,这里命名为 R
  • 群里只有乘法一种运算,表示为置换的乘法
    • 比如 U*U=U^2 => (1,3,8,6)(2,5,7,4) = (1,8)(3,6)(2,7)(5,4)

简化旋转的表示方法

gap> f := FreeGroup("U", "R");
<free group on the generators [ U, R ]>gap> hom := GroupHomomorphismByImages( f, cube, GeneratorsOfGroup(f), GeneratorsOfGroup(cube) );
[ U, R ] -> [ (1,3,8,6)(2,5,7,4), (3,12,10,8)(5,13,11,9) ]
  • FreeGroup(“U”, “R”)是创建了两个元素的群,为了简化cube中两个元素的表示,分别代表Top、Right的旋转
  • GroupHomomorphismByImages是表示创建群同态,将U、R用于表示cube中定义的两个旋转

做一些测试

  • 比如我们要实现 5、9 两个块的交换,即实现 (5,9)
    gap> pre := PreImagesRepresentative(hom, (5,9));
    U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1*R*U*R^-1*U*R*U^-2*R^-1*U*R*U^-1*R^-1*U^-2*R*U^-1*R^-1*U^-1*R*U*R^-1*U^-1
    
  • PreImagesRepresentative用于群的求解,计算出(5,9)的计算公式
  • 答案也很好理解,比如:U、U^2、U^-1 分别表示 U的一次、两次、三次旋转

  • 按照公式可逆旋转一次,验证一下
    gap> v := Image(hom, pre);
    (2,4)(5,9)
    
  • 结果是 (2,4), (5,9) 两个置换,符合预期。 因为(5,9)无法单独置换

在gap中使用 U、R 的转换标识

gap> U:=f.1;
gap> R:=f.2;
gap> Image(hom, R*U^-1*R^-1*U^-1*R*U^-1*R^-1*U*R*U*R^-1*U);
(1,8)(2,4)(3,6)(5,9)

可以自行构造转换方案来计算转换结果,可以用于批量验证自己的想法

然后,精彩来了…

枚举所有的转动可能

for x in cube doif LargestMovedPoint(x) <=7 thenf := PreImagesRepresentative( hom, x);Print(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");fi;
od;    
  • 这里我们枚举了cube中所有可能
  • LargestMovedPoint(x)是判断x中数字的最大值,7表示,我们只考虑1-7这7个数字转动的情况
  • 然后进行求解公式,并打出来
  • Length(zz)表示求解公式的步数,几步可以转动完成

我们将看到这样的结果

0 ()	===>	0	<identity ...>
7 (4,7,5)	===>	10	U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1
7 (4,5,7)	===>	10	U*R^-1*U^2*R*U*R^-1*U*R*U
7 (2,5,7)	===>	10	R*U*R^-1*U*R*U^-2*R^-1*U^-2
5 (2,5,4)	===>	10	U*R*U*R^-1*U*R*U^-2*R^-1*U
7 (2,5)(4,7)	===>	18	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-2*U^2*R*U*R^-1*U*R*U
7 (2,7,5)	===>	10	R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-2
7 (2,7,4)	===>	20	U*R*U*R^-1*U*R*U^-2*(R^-1*U^2)^2*R*U*R^-1*U*R*U
7 (2,7)(4,5)	===>	20	(U*R*U*R^-1*U*R*U^-2*R^-1)^2*U^-2
7 (2,4,7)	===>	20	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1*R*U*R^-1*U*R*U^-2*R^-1*U^-2
5 (2,4,5)	===>	10	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1
7 (2,4)(5,7)	===>	20	U^-1*R*U^2*(R^-1*U^-1*R*U^-1*R^-1*U^-1)^2*U^-1*R*U^-2
  • 举个例子
    • 要转换实现(4,7,5),这样三个棱块的转换,可以使用 U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1 这个公式
    • 我们使用下面的JS方法,做个转换
      'U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1'.replaceAll('*', ' ').replaceAll(/\((.*)\)\^2/g, "$1 $1").replaceAll('^-1', "'").replaceAll("^2", "2").replaceAll("^-2", "2");
      

      答案是:U’ R’ U’ R U’ R’ U2 R U’ (参考 魔方小站工具之魔方公式标记图解 这里的表示法)

我们验证一下

我们使用这个工具进行验证,Cubie 或者自己拿魔方验证一下, 

cubie

 验证通过

校验更多

刚才的公式,我们挑选一部进行校验

(4,7,5) => U' R' U' R  U' R' U2 R  U'
(4,5,7) => U  R' U2 R  U  R' U  R  U
(2,7,5) =>    R' U' R  U' R' U2 R  U2
(2,5,7) =>    R  U  R' U  R  U2 R' U2
(2,5,4) => U  R  U  R' U  R  U2 R' U
(2,4,5) => U' R  U2 R' U' R  U' R' U'(2,7,4) => U R U R' U R U2 R' U2 R' U2 2 R U R' U R U
(2,7)(4,5) => U R U R' U R U2 R' U R U R' U R U2 R' U2
(2,4)(5,7) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2
(2,5)(4,7) => U' R U2 R' U' R U' R2 U2 R U R' U R U

这些公式,再结合看看 魔方小站三阶魔方教程2(一步一步图解+视频+3D动画)一看就懂的魔方教程 ,我们能发现更多的魔方公式

再计算和校验

这里只计算了一些步数比较小的,比较有研究价值

for x in cube dof := PreImagesRepresentative( hom, x);if LargestMovedPoint(x) = 8 and Length(f) <= 10 thenPrint(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");fi;
od;

结果:

8 (1,6,8,3)(2,4,7,5)	===>	1	U'
8 (1,6,8,3)(2,4,5,7)	===>	9	U R U2 R' U' R U' R'
8 (1,6,8,3)(2,4)	===>	9	U R' U2 R U R' U R
8 (1,6,8,3)(4,7)	===>	9	R U R' U R U2 R' U
8 (1,6,8,3)(5,7)	===>	9	U R U R' U R U2 R'
8 (1,8)(2,7)(3,6)(4,5)	===>	2	U2
8 (1,8)(2,7,4)(3,6)	===>	10	U R U2 R' U' R U' R' U'
8 (1,8)(2,7,5)(3,6)	===>	10	U R' U2 R U R' U R U'
8 (1,8)(2,4,5)(3,6)	===>	8	R U R' U R U2 R'
8 (1,8)(2,4,7)(3,6)	===>	10	U R U R' U R U2 R' U'
8 (1,8)(3,6)(4,5,7)	===>	8	R' U' R U' R' U2 R
8 (1,8)(3,6)(4,7,5)	===>	8	R' U2 R U R' U R
8 (1,8)(2,5,4)(3,6)	===>	8	R U2 R' U' R U' R'
8 (1,8)(2,5,7)(3,6)	===>	10	U R' U' R U' R' U2 R U'
8 (1,3,8,6)(2,5,7,4)	===>	1	U
8 (1,3,8,6)(2,7,5,4)	===>	9	R U R' U R U2 R' U'
8 (1,3,8,6)(2,4)	===>	9	R' U' R U' R' U2 R U'
8 (1,3,8,6)(5,7)	===>	9	R U2 R' U' R U' R' U'
8 (1,3,8,6)(4,7)	===>	9	U' R U2 R' U' R U' R'
for x in cube dof := PreImagesRepresentative( hom, x);if LargestMovedPoint(x) = 9 thenPrint(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");fi;
od;  

举两个比较特殊的例子

  (1,3,8,6)(2,5)(4,7,9) => R U' R' U2 R U2 R'(1,6,8,3)(2,9,5)(4,7) => R U2 R' U2 R U  R'

计算更多可能

我们来打印出各种可能(只看1-10的变换)

for x in cube dof := PreImagesRepresentative( hom, x);if LargestMovedPoint(x) <= 10 thenPrint(x, " => ", f, "\n");fi;
od;

通过以下程序转换

package test;import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.List;public class Main {public static void main(String[] args) throws IOException {List<String> lines = Files.readAllLines(Path.of("input.txt"));List<String> result = lines.stream().map(s -> s.replace('*', ' ').replaceAll("\\((.+)\\)\\\\^2", "$1 $1").replace("^-1", "'").replace("^2", "2").replace("^-2", "2")).toList();System.out.println(String.join("\n", result));}
}

得到:

(5,7,9)                 => R U' R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(5,9,7)                 => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R'
(4,7,9)                 => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(4,7)(5,9)              => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(4,7,5)                 => U' R' U' R U' R' U2 R U'
(4,9,7)                 => U R U R' U R U2 R' U R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U R'
(4,9,5)                 => U R U2 R' U2 R U R'
(4,9)(5,7)              => U R' U2 R U R' U R U R U' R' U2 R U2 R' U'
(4,5,7)                 => U R' U2 R U R' U R U
(4,5,9)                 => R U' R' U2 R U2 R' U'
(4,5)(7,9)              => U2 R U' R' U2 R U' R' U' R U R'
(3,8)(5,9,7)(6,10)      => U' R U R'
(3,8)(5,7,9)(6,10)      => R U' R' U
(3,8)(6,10)             => U R' U2 R U R' U R U' R U' R' U2 R U' R'
(3,8)(4,7)(5,9)(6,10)   => U R' U2 R U R' U R U R U' R' U
(3,8)(4,7,9)(6,10)      => R U' R2 U' R U' R' U2 R U'
(3,8)(4,7,5)(6,10)      => U2 R U' R' U2 R U' R'
(3,8)(4,5,9)(6,10)      => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U' R' U'
(3,8)(4,5)(6,10)(7,9)   => U R U R' U R U2 R' U R' U' R U' R' U2 R U R U R'
(3,8)(4,5,7)(6,10)      => R U R' U2 R U R' U2
(3,8)(4,9,7)(6,10)      => U R' U2 R U R' U R2 U R'
(3,8)(4,9)(5,7)(6,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R' U'
(3,8)(4,9,5)(6,10)      => U R U R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(3,10,8,6)(7,9)         => R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R'
(3,10,8,6)(5,7)         => R U2 R' U R U R' U' R U2 R' U' R U' R'
(3,10,8,6)(5,9)         => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U R' U'
(3,10,8,6)(4,7,5,9)     => U' R U2 R' U' R U' R' U R U' R' U' R U' U' R' U' R U' R' U'
(3,10,8,6)(4,7,9,5)     => U R' U2 R U R' U R U2 R U R' U'
(3,10,8,6)(4,7)         => R U' R' U2 R U' R' U'
(3,10,8,6)(4,9)         => U R U R' U2 R' U' R U' R' U2 R U'
(3,10,8,6)(4,9,7,5)     => U R U R' U R U' U2 R' U' R U2 R' U' R U R'
(3,10,8,6)(4,9,5,7)     => U R U R' U'
(3,10,8,6)(4,5,7,9)     => R U R' U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(3,10,8,6)(4,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U2 R' U' R U R'
(3,10,8,6)(4,5)         => R U2 R' U R U' R' U' R U' R' U'
(3,6,8,10)(4,7,5,9)     => U R U' R' U'
(3,6,8,10)(4,7)         => U R U R' U2 R U R'
(3,6,8,10)(4,7,9,5)     => R U' R' U R U2 R' U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(3,6,8,10)(7,9)         => R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R'
(3,6,8,10)(5,9)         => U R U' R' U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(3,6,8,10)(5,7)         => R U R' U R U2 R' U R U' R' U' R U2 R'
(3,6,8,10)(4,5)         => U R U R' U R U R' U' R U2 R'
(3,6,8,10)(4,5,9,7)     => U R U' R' U2 R' U' R U' R' U2 R U'
(3,6,8,10)(4,5,7,9)     => R U' R' U R U2 R' U R U2 U R' U' R U' R' U'
(3,6,8,10)(4,9)         => U R' U2 R U R' U R U2 R U' R' U'
(3,6,8,10)(4,9,7,5)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' R'
(3,6,8,10)(4,9,5,7)     => U' R U2 R' U' R U' R' U R U' R' U' R U2 R' U' R U R' U'
(2,5,9)                 => R U R' U R U2 R' U R U' R' U2 R U2 R'
(2,5)(7,9)              => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U R'
(2,5,7)                 => R U R' U R U2 R' U2
(2,5,9,7,4)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U' R' U' R U R'
(2,5,4)                 => U R U R' U R U2 R' U
(2,5,7,9,4)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(2,5,9,4,7)             => U R U' R' U R U R' U2 R U R2 U' R U' R' U2 R U'
(2,5,4,7,9)             => U R U R' U R U R' U2 R U2 R'
(2,5)(4,7)              => U' R U2 R' U' R U' R2 U2 R U R' U R U
(2,5,7,4,9)             => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U2 R'
(2,5)(4,9)              => U' R U2 R' U' R U' R' U' R U' R' U2 R U2 R' U'
(2,5,4,9,7)             => U R U2 R' U2 R U R' U2 R' U2 R U R' U R
(2,5,7)(3,8)(6,10)      => R U R' U2 R U R' U U2 R U R' U R U2 R' U
(2,5)(3,8)(6,10)(7,9)   => R' U' R U' R' U2 R U R U R'
(2,5,9)(3,8)(6,10)      => U' R U R' U U R' U U R U R' U R
(2,5)(3,8)(4,9)(6,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U2 R U' R' U2 R U' R' U' R U' R' U'
(2,5,7,4,9)(3,8)(6,10)  => U R U R' U R U R' U2 R U R2 U' R U' R' U2 R U'
(2,5,4,9,7)(3,8)(6,10)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U R'
(2,5,9,7,4)(3,8)(6,10)  => U2 U R U R' U R U R' U R U2 R' U
(2,5,7,9,4)(3,8)(6,10)  => R U' R' U2 R U R' U R U2 R' U
(2,5,4)(3,8)(6,10)      => R U R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(2,5)(3,8)(4,7)(6,10)   => R' U' R U' R' U2 R R U' R' U2 R U' R'
(2,5,9,4,7)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U' R' U'
(2,5,4,7,9)(3,8)(6,10)  => R U' R2 U' R U' R' U2 R2 U R' U R U2 R' U
(2,5,9,7)(3,10,8,6)     => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U' R U R'
(2,5,7,9)(3,10,8,6)     => R U R' U R U R' U' R' U' R U' R' U2 R U'
(2,5)(3,10,8,6)         => R U2 R' U R U R' U
(2,5,9)(3,10,8,6)(4,7)  => U' R U2 R' U' R U' R' U R U' R'
(2,5,4,7)(3,10,8,6)     => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U'
(2,5)(3,10,8,6)(4,7,9)  => R U R' U R U R' U U R' U U R U R' U R U R U R' U R U2 R' U
(2,5,9,4)(3,10,8,6)     => R' U' R U' R' U2 R2 U' R' U' R U' U' R' U' R U' R' U'
(2,5,4)(3,10,8,6)(7,9)  => R U R' U R U R' U U R U2 R' U' R U' R'
(2,5,7,4)(3,10,8,6)     => U R U R' U R U2 R' U R U' R' U2 R U' R' U'
(2,5,7)(3,10,8,6)(4,9)  => U R U2 R' U R U2 R' U
(2,5)(3,10,8,6)(4,9,7)  => U R U R' U R' U2 R U R' U R
(2,5,4,9)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R'
(2,5,7,4)(3,6,8,10)     => U R' U2 R U R' U R2 U' R' U' R U2 R'
(2,5,4)(3,6,8,10)(7,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' U' R U' R' U' R U' R'
(2,5,9,4)(3,6,8,10)     => U R U' R' U R' U U R U R' U R
(2,5,7)(3,6,8,10)(4,9)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U'
(2,5)(3,6,8,10)(4,9,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U' R U' R'
(2,5,4,9)(3,6,8,10)     => R U R' U R U R' U' R U R'
(2,5,7,9)(3,6,8,10)     => R U' R' U R U2 R' U R U R' U
(2,5)(3,6,8,10)         => U' R U' R' U' R U2 R'
(2,5,9,7)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' R'
(2,5,9)(3,6,8,10)(4,7)  => U2 R U2 R' U
(2,5)(3,6,8,10)(4,7,9)  => R' U' R U' R' U' U' R U' R U' R' U'
(2,5,4,7)(3,6,8,10)     => U R U R' U U R U R' U R U R' U R U2 R' U
(2,9,7)(3,8)(6,10)      => R U R' U R U2 R' U R U R'
(2,9,5)(3,8)(6,10)      => R' U' R U' R' U2 R U2 R U' R' U
(2,9)(3,8)(5,7)(6,10)   => R' U' R U' R' U2 R U2 R U' R' U' R U' U' R' U' R U' R'
(2,9,4)(3,8)(6,10)      => R U R' U R U U R' U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,9,7,5,4)(3,8)(6,10)  => U R U R' U R U' R'
(2,9,5,7,4)(3,8)(6,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U
(2,9)(3,8)(4,7)(6,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R'
(2,9,5,4,7)(3,8)(6,10)  => R U R' U R U U R' U R U R' U' R' U' R U' R' U2 R U'
(2,9,4,7,5)(3,8)(6,10)  => U R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R' U'
(2,9,7,4,5)(3,8)(6,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R2 U R'
(2,9,4,5,7)(3,8)(6,10)  => U' R U' R' U' U' R U' R' U' R U' R' U'
(2,9)(3,8)(4,5)(6,10)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U' U' R' U' R U' R'
(2,9,5,7)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U R' U'
(2,9,7,5)(3,10,8,6)     => U' R U' R' U' R U2 R' U' R U R'
(2,9)(3,10,8,6)         => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R'
(2,9)(3,10,8,6)(4,5,7)  => U2 R U' R'
(2,9,4,5)(3,10,8,6)     => R U' R' U R U' R' U' R U' R'
(2,9,7)(3,10,8,6)(4,5)  => R U' R' U R U R' U R' U' R U' R' U2 R U'
(2,9,4)(3,10,8,6)(5,7)  => U2 R U' R' U' R U' U' R' U' R U' R' U'
(2,9,7,4)(3,10,8,6)     => U R' U2 R U R' U R2 U' R' U' R U2 R' U' R U R'
(2,9,5,4)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U R' U'
(2,9,4,7)(3,10,8,6)     => R U' R' U R U R' U2
(2,9,5)(3,10,8,6)(4,7)  => U' R U2 R' U2
(2,9)(3,10,8,6)(4,7,5)  => U R' U2 R U R' U R U' R U' R'
(2,9,5)                 => R U2 R' U2 R U R' U' R U2 R' U' R U' R'
(2,9)(5,7)              => R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R'
(2,9,7)                 => R U2 R' U2 R U R' U
(2,9,4,5,7)             => R U R' U R U' U' R' U2 R U' R' U2 R U2 R' U'
(2,9,7,4,5)             => R U2 R' U2 R U' R' U' R U' R' U'
(2,9)(4,5)              => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U2 R'
(2,9)(4,7)              => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U2 R'
(2,9,4,7,5)             => R U2 R' U2 R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(2,9,5,4,7)             => R U2 R' U2 R U R2 U' R U' R' U2 R U'
(2,9,5,7,4)             => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(2,9,4)                 => U R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(2,9,7,5,4)             => R U U R' U2 R U R' U2 R U R' U R U2 R' U
(2,9,4)(3,6,8,10)(5,7)  => U R U R' U R U2 R' U2 R U' R' U'
(2,9,5,4)(3,6,8,10)     => R U R2 U2 R U R' U R
(2,9,7,4)(3,6,8,10)     => R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,9)(3,6,8,10)         => R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(2,9,5,7)(3,6,8,10)     => R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(2,9,7,5)(3,6,8,10)     => U R' U2 R U R' U R U R U' R' U' R U' R'
(2,9,7)(3,6,8,10)(4,5)  => R U' R' U' R U' R'
(2,9)(3,6,8,10)(4,5,7)  => R U R' U R' U' R U' R' U2 R U'
(2,9,4,5)(3,6,8,10)     => R U R2 U U R U R' U R U R U R' U R U2 R' U
(2,9,4,7)(3,6,8,10)     => R U R' U R U2 R' U' R U' R' U'
(2,9,5)(3,6,8,10)(4,7)  => R U R' U' R U R' U R U2 R' U
(2,9)(3,6,8,10)(4,7,5)  => R U R' U2
(2,7)(3,8)(5,9)(6,10)   => R U R' U R U2 R' U2 R U' R' U
(2,7,5)(3,8)(6,10)      => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R'
(2,7,9)(3,8)(6,10)      => R U' R' U' R U' U' R' U' R U' R'
(2,7,4)(3,8)(6,10)      => R U R' U2 R U' R' U' R U' R'
(2,7,9,5,4)(3,8)(6,10)  => U R U R' U R U2 R' U R U' R' U
(2,7,5,9,4)(3,8)(6,10)  => U' R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,7,4,5,9)(3,8)(6,10)  => U R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R'
(2,7)(3,8)(4,5)(6,10)   => U' R U2 R' U' R U' R' U' R U R' U R U R' U2 R U' R'
(2,7,9,4,5)(3,8)(6,10)  => R U R' U R U2 R' U R U' R' U' U' R U' R' U' R U' R' U'
(2,7,4,9,5)(3,8)(6,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U
(2,7)(3,8)(4,9)(6,10)   => U R U R' U R U R' U' U' R U' R' U' R U' R' U'
(2,7,5,4,9)(3,8)(6,10)  => U R U R' U R U R' U U R U R' U
(2,7)(3,10,8,6)         => R U2 R' U R U R' U2 U R' U2 R U R' U R
(2,7,9,5)(3,10,8,6)     => R U R' U R U R' U R U R' U R U2 R' U
(2,7,5,9)(3,10,8,6)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R'
(2,7,4)(3,10,8,6)(5,9)  => U R U R' U R U2 R' U2 R U R' U'
(2,7,5,4)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U'
(2,7,9,4)(3,10,8,6)     => R U R' U R U R' U' R U2 R' U' R U' R' U'
(2,7,4,9)(3,10,8,6)     => U R U R' U R U2 R' U' R U' R'
(2,7)(3,10,8,6)(4,9,5)  => R U R' U R U2 R' U' R U R' U'
(2,7,5)(3,10,8,6)(4,9)  => U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,7)(3,10,8,6)(4,5,9)  => U R U' R' U R U2 R' U R U R' U R' U' R U' R' U2 R U'
(2,7,4,5)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U'
(2,7,9)(3,10,8,6)(4,5)  => R U R' U R U R'
(2,7,9)                 => U' R U' R' U2 R U2 R'
(2,7,5)                 => R' U' R U' R' U2 R U2
(2,7)(5,9)              => U' R U' R' U' U' R U' R' U' R U R' U'
(2,7,4)                 => U R U R' U R U2 R' U2 R' U2 R U R' U R U
(2,7,5,9,4)             => U R U' R' U R U R' U U R U R' U U R U R' U R U2 R' U
(2,7,9,5,4)             => R U' R' U R U R' U2 R U' R' U' R U' R'
(2,7)(4,9)              => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U2 R' U'
(2,7,5,4,9)             => U R U U R' U2 R U R' U2 R U2 R' U' R U' R'
(2,7,4,9,5)             => U R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(2,7,4,5,9)             => U R' U2 R U R' U R2 U' R' U2 R U2 R'
(2,7,9,4,5)             => R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(2,7)(4,5)              => U R U R' U R U2 R' U R U R' U R U2 R' U2
(2,7,9,4)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U'
(2,7,4)(3,6,8,10)(5,9)  => U2 R U' R' U' R U2 R' U' R U R' U'
(2,7,5,4)(3,6,8,10)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U2 R'
(2,7,9)(3,6,8,10)(4,5)  => U R' U2 R U R' U R U' R U' R' U' R U R'
(2,7)(3,6,8,10)(4,5,9)  => U R U' R' U R U2 R' U' R U' R'
(2,7,4,5)(3,6,8,10)     => U R U R' U U R U R' U U R U2 R' U' R U' R'
(2,7,5)(3,6,8,10)(4,9)  => U' R U2 R' U' R U2 R' U'
(2,7,4,9)(3,6,8,10)     => U2 R U' R' U' R U R'
(2,7)(3,6,8,10)(4,9,5)  => U R' U2 R U R' U R U' R U' R' U' R U2 R' U' R U R' U'
(2,7,9,5)(3,6,8,10)     => R U' R' U R U2 R' U R U R' U2 U R' U2 R U R' U R
(2,7)(3,6,8,10)         => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R'
(2,7,5,9)(3,6,8,10)     => U R U' R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,4,7,9,5)             => R U' R' U R U R' U2 R U R' R' U2 R U R' U R U R U R' U R U2 R' U
(2,4,7)                 => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2
(2,4,7,5,9)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R'
(2,4,5)                 => U' R U2 R' U' R U' R' U'
(2,4,5,7,9)             => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U2 R'
(2,4,5,9,7)             => R U R' U R U R' U2 R U' R' U' R U R'
(2,4,9,7,5)             => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R'
(2,4,9,5,7)             => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U R' U'
(2,4,9)                 => U R U2 R' U2 R U R' U' R U2 R' U' R U' R' U'
(2,4)(7,9)              => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(2,4)(5,9)              => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U' R' U' R U R' U'
(2,4)(5,7)              => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2
(2,4,7,5)(3,6,8,10)     => U R U R' U2 R U R' U' R U2 R' U' R U' R' U'
(2,4,7)(3,6,8,10)(5,9)  => U R U' R' U2 R U2 R' U' R U' R' U'
(2,4,7,9)(3,6,8,10)     => R U' R' U R U2 R' U R U R2 U' R U' R' U2 R U'
(2,4,9,5)(3,6,8,10)     => U R U R' U R U U R' U R U R2 U2 R U R' U R
(2,4,9)(3,6,8,10)(5,7)  => U R U R' U R U U R' U R U R' U2
(2,4,9,7)(3,6,8,10)     => U R U R' U R U2 R' U R U' R' U' R U' R'
(2,4,5)(3,6,8,10)(7,9)  => R U R' U R U2 R' U' U' R U' R' U' R U' R'
(2,4,5,7)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R' U' R U2 R'
(2,4,5,9)(3,6,8,10)     => U R U' R' U R' U U R U R' U R U R U R' U R U2 R' U
(2,4)(3,6,8,10)         => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R'
(2,4)(3,6,8,10)(5,9,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U' R'
(2,4)(3,6,8,10)(5,7,9)  => R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R' U'
(2,4,7,9)(3,10,8,6)     => U R U R' U R U2 R' U R U R' U R U R'
(2,4,7)(3,10,8,6)(5,9)  => U R U' R' U R U2 R' U R U R' U2
(2,4,7,5)(3,10,8,6)     => R U2 R' U R U R2 U' R U' R' U2 R U'
(2,4)(3,10,8,6)(5,9,7)  => U R U' R' U R U2 R' U R U R2 U2 R U R' U R
(2,4)(3,10,8,6)         => R U2 R' U R U R' U U R U R' U R U2 R' U
(2,4)(3,10,8,6)(5,7,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U R' U'
(2,4,9,5)(3,10,8,6)     => R' U' R U' R' U' U' R U' R U R' U'
(2,4,9,7)(3,10,8,6)     => U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(2,4,9)(3,10,8,6)(5,7)  => U R U R' U2 R U2 R' U' R U' R' U'
(2,4,5,9)(3,10,8,6)     => R' U' R U' R' U2 R2 U' R'
(2,4,5)(3,10,8,6)(7,9)  => R U R' U R U R' U U R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,4,5,7)(3,10,8,6)     => R U2 R' U R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,4,5,9,7)(3,8)(6,10)  => U' R U R' U' R U2 R' U' R U' R' U'
(2,4,5,7,9)(3,8)(6,10)  => R U R' U' R U' R' U'
(2,4,5)(3,8)(6,10)      => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U' R'
(2,4,7,9,5)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' R U' R' U
(2,4,7,5,9)(3,8)(6,10)  => U' R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(2,4,7)(3,8)(6,10)      => R U R' U R U R' U2 R U' R'
(2,4)(3,8)(5,7)(6,10)   => U R U R' U R U2 R' U' R U' R' U2 R U' R'
(2,4)(3,8)(5,9)(6,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U
(2,4)(3,8)(6,10)(7,9)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U R'
(2,4,9,7,5)(3,8)(6,10)  => U' R U2 R' U' R U' R' U2 R U R'
(2,4,9)(3,8)(6,10)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U' R U' U' R' U' R U' R'
(2,4,9,5,7)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U
(1,6,8,3)(2,4,7,5)      => U'
(1,6,8,3)(2,4,7,9)      => U R' U2 R U R' U R U' R U' R' U2 R U2 R'
(1,6,8,3)(2,4,7)(5,9)   => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R' U'
(1,6,8,3)(2,4,5)(7,9)   => R U' R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(1,6,8,3)(2,4,5,9)      => U R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,8,3)(2,4,5,7)      => U R U2 R' U' R U' R'
(1,6,8,3)(2,4,9,5)      => U R U U R' U2 R U R' U R' U2 R U R' U R
(1,6,8,3)(2,4,9)(5,7)   => U2 R U' R' U2 R U2 R'
(1,6,8,3)(2,4,9,7)      => U R U2 R' U2 R U R' U R U2 R' U' R U' R'
(1,6,8,3)(2,4)          => U R' U2 R U R' U R
(1,6,8,3)(2,4)(5,9,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6,8,3)(2,4)(5,7,9)   => R U' R' U R U R' U U R U R' U
(1,6,10,8)(2,4,7)(5,9)  => U' R U R' U'
(1,6,10,8)(2,4,7,9)     => R U' R'
(1,6,10,8)(2,4,7,5)     => R U R' U2 R U R' U' R U2 R' U' R U' R'
(1,6,10,8)(2,4,5,9)     => U R' U2 R U R' U R U R U' R'
(1,6,10,8)(2,4,5)(7,9)  => R U' R' U2 R U2 R' U' R U' R'
(1,6,10,8)(2,4,5,7)     => U2 R U' R' U2 R U' R' U'
(1,6,10,8)(2,4)(5,9,7)  => U' R U R' U R' U2 R U R' U R
(1,6,10,8)(2,4)(5,7,9)  => R U' R' U2 R' U2 R U R' U R
(1,6,10,8)(2,4)         => R U R' U2 R U R' U
(1,6,10,8)(2,4,9,5)     => U R' U2 R U R' U R2 U R' U'
(1,6,10,8)(2,4,9,7)     => U R U R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,10,8)(2,4,9)(5,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R'
(1,6)(2,4,7,9,5)(3,10)  => R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,4,7)(3,10)      => R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,6)(2,4,7,5,9)(3,10)  => R U R' U R U2 R' U R U' R' U' R U R'
(1,6)(2,4,5,9,7)(3,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U' R U' R'
(1,6)(2,4,5,7,9)(3,10)  => R U R' U R U2 R' U R U2 R' U
(1,6)(2,4,5)(3,10)      => R' U' R U' R' U2 R U2 R U' R' U' R U2 R'
(1,6)(2,4,9,7,5)(3,10)  => U R U' R' U' R U' R'
(1,6)(2,4,9,5,7)(3,10)  => U R U R2 U2 R U R' U R
(1,6)(2,4,9)(3,10)      => U R U R' U2
(1,6)(2,4)(3,10)(7,9)   => U R' U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(2,4)(3,10)(5,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U2 R' U' R U R' U'
(1,6)(2,4)(3,10)(5,7)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U2 R'
(1,6,3,8,10)(2,4,5,9,7) => U R U' R' U2
(1,6,3,8,10)(2,4,5)     => U R U R' U2 R U R' U'
(1,6,3,8,10)(2,4,5,7,9) => U R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R'
(1,6,3,8,10)(2,4,7,9,5) => R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,4,7,5,9) => U R U' R2 U2 R U R' U R
(1,6,3,8,10)(2,4,7)     => R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,4)(5,7)  => U R U R' U R U R' U' R U2 R' U'
(1,6,3,8,10)(2,4)(5,9)  => U R U R' U' R U' R'
(1,6,3,8,10)(2,4)(7,9)  => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(2,4,9,7,5) => U R' U2 R U R' U R U2 R U' R' U2
(1,6,3,8,10)(2,4,9,5,7) => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,4,9)     => R U' R' U' U' R U' R' U' R U' R'
(1,6,8,3)(4,7,5,9)      => R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(4,7,9,5)      => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(4,7)          => R U R' U R U2 R' U
(1,6,8,3)(5,9)          => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(5,7)          => U R U R' U R U2 R'
(1,6,8,3)(7,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(4,5,9,7)      => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(4,5,7,9)      => U R U R' U R U R' U2 R U2 R' U'
(1,6,8,3)(4,5)          => U' R U2 R' U' R U' R2 U2 R U R' U R
(1,6,8,3)(4,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U2 R' U'
(1,6,8,3)(4,9,7,5)      => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6,8,3)(4,9,5,7)      => U R U2 R' U U R U2 R' U R U2 R' U
(1,6,10,8)(4,7)         => U R U R' U R U2 R' U R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(4,7,9,5)     => R U' R' U R U R' U R U2 R' U
(1,6,10,8)(4,7,5,9)     => U' R U2 R' U R U2 R' U
(1,6,10,8)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(4,9)         => U R U R' U R U R' U U R U R' U U R U2 R' U' R U' R'
(1,6,10,8)(4,9,5,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U R' U'
(1,6,10,8)(5,9)         => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U R' U'
(1,6,10,8)(7,9)         => U' R U2 R' U' R U2 R' U' R U2 R' U' R U R'
(1,6,10,8)(5,7)         => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U' U' R U' R' U'
(1,6,10,8)(4,5)         => R' U' R U' R' U2 R R U' R' U2 R U' R' U'
(1,6,10,8)(4,5,9,7)     => U' R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,6,10,8)(4,5,7,9)     => U R U R' U R U2 R' U R U' R' U' R U' U' R' U' R U' R' U'
(1,6)(3,10)(4,7)(5,9)   => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U' R U R' U'
(1,6)(3,10)(4,7,9)      => R U R' U R U R' U R U2 R' U' R U' R'
(1,6)(3,10)(4,7,5)      => R U2 R' U R U R'
(1,6)(3,10)(4,5,9)      => U' R U2 R' U' R U' R' U R U' R' U'
(1,6)(3,10)(4,5,7)      => R U' R' U' R U2 R'
(1,6)(3,10)(4,5)(7,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(3,10)(5,9,7)      => U R U R' U R U2 R' U2 R U' R' U' R U' R'
(1,6)(3,10)(5,7,9)      => R U R' U R U R' U2 R U2 R' U' R U' R' U'
(1,6)(3,10)             => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U' R U2 R'
(1,6)(3,10)(4,9,7)      => R U R' U R U' U' R' U' R U' R' U' R U' R'
(1,6)(3,10)(4,9,5)      => U R U R' U' R U R' U R U2 R' U
(1,6)(3,10)(4,9)(5,7)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U'
(1,6,3,8,10)            => U R U R' U2 R U2 R' U R U2 R' U
(1,6,3,8,10)(5,7,9)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(5,9,7)     => U R U' R' U' R U R' U R U2 R' U
(1,6,3,8,10)(4,9,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U2
(1,6,3,8,10)(4,9,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(4,9)(5,7)  => R U R' U R U R' U' R U R' U'
(1,6,3,8,10)(4,7,9)     => R U' R' U R U2 R' U R U R'
(1,6,3,8,10)(4,7,5)     => U' R U' R' U' R U2 R' U'
(1,6,3,8,10)(4,7)(5,9)  => U' R U2 R' U' R U' R' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(4,5,9)     => U R U R' U' R U' R' U R U R' U R U2 R' U
(1,6,3,8,10)(4,5)(7,9)  => R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(4,5,7)     => U R U R' U U R U R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,6,10,8)(2,9,5)(4,7)  => R U R' U R U2 R' U R U R' U'
(1,6,10,8)(2,9)(4,7,5)  => R' U' R U' R' U2 R U2 R U' R'
(1,6,10,8)(2,9,4,7)     => R U R' U R U U R' U R U U R' U R U2 R' U
(1,6,10,8)(2,9,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,9,5,7)     => U R U R' U R U' R' U'
(1,6,10,8)(2,9)         => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R'
(1,6,10,8)(2,9,4,5)     => R U R' U R U U R' U R U R' U2 R' U' R U' R' U2 R U'
(1,6,10,8)(2,9)(4,5,7)  => R U R' U R U U R' U R U R' U R U2 R' U' R U' R'
(1,6,10,8)(2,9,7)(4,5)  => R U R' U R U U R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,6,10,8)(2,9,5,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U R' U'
(1,6,10,8)(2,9,7,4)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,9,4)(5,7)  => R U R' U R U U R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6)(2,9)(3,10)(4,7)   => R' U' R U' R' U2 R U' U2 R U' R' U' R U R'
(1,6)(2,9,5,4,7)(3,10)  => U' R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,9,4,7,5)(3,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U'
(1,6)(2,9,4)(3,10)      => U2 R U' R' U'
(1,6)(2,9,7,5,4)(3,10)  => U' R U2 R' U' R U2 R' U' R U' R'
(1,6)(2,9,5,7,4)(3,10)  => R U' R' U R U R' U' R U2 R' U' R U' R'
(1,6)(2,9,7)(3,10)      => R U' R' U R U R' U U R U R' U R U2 R' U
(1,6)(2,9,5)(3,10)      => R U' R' U R U R2 U' R U' R' U2 R U'
(1,6)(2,9)(3,10)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U R'
(1,6)(2,9,7,4,5)(3,10)  => R U' R' U R U R' U
(1,6)(2,9)(3,10)(4,5)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U' R U R'
(1,6)(2,9,4,5,7)(3,10)  => U R' U2 R U R' U R U' R U' R' U'
(1,6,8,3)(2,9)(4,7,5)   => R U2 R' U2 R U R' U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,9,4,7)      => R U2 R' U U R U R' U R U R' U R U2 R' U
(1,6,8,3)(2,9,5)(4,7)   => R U2 R' U2 R U R'
(1,6,8,3)(2,9,7,4)      => U' R U2 R' U' R U2 R' U2 R U' R' U' R U R'
(1,6,8,3)(2,9,5,4)      => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(2,9,4)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(2,9,4,5)      => R U2 R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,8,3)(2,9,7)(4,5)   => R U2 R' U2 R U R' U2 R' U2 R U R' U R U R U R' U R U2 R' U
(1,6,8,3)(2,9)(4,5,7)   => R U U R' U2 R U R' U2 R U2 R' U' R U' R'
(1,6,8,3)(2,9)          => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U2 R'
(1,6,8,3)(2,9,7,5)      => R U2 R' U2 R U R' U2 R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,9,5,7)      => R U U R' U2 R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,9,7)     => R U R2 U' R U' R' U2 R U'
(1,6,3,8,10)(2,9)(5,7)  => R U R' U2 R U R' U R U2 R' U
(1,6,3,8,10)(2,9,5)     => R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,9,4,7,5) => R U R' U2 U R' U2 R U R' U R
(1,6,3,8,10)(2,9)(4,7)  => R U R' U' R' U U R U R' U R U R U R' U R U2 R' U
(1,6,3,8,10)(2,9,5,4,7) => U R' U2 R U R' U R U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,9,5,7,4) => R U' R' U' R U' R' U'
(1,6,3,8,10)(2,9,4)     => R U R' U' R U2 R' U' R U' R'
(1,6,3,8,10)(2,9,7,5,4) => R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,9,7,4,5) => R U R' U R U2 R' U' R U' R' U2
(1,6,3,8,10)(2,9)(4,5)  => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U' R'
(1,6,3,8,10)(2,9,4,5,7) => R U R' U
(1,6,10,8)(2,5,9)(4,7)  => R U R' U R U2 R' U2 R U' R'
(1,6,10,8)(2,5,4,7)     => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U'
(1,6,10,8)(2,5)(4,7,9)  => R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,5)         => R U R' U2 R U' R' U' R U' R' U'
(1,6,10,8)(2,5,7,9)     => U R U R' U R U2 R' U R U' R'
(1,6,10,8)(2,5,9,7)     => U R' U2 R U R' U R U2 R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,9,4)     => U R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,5,7,4)     => U' R U2 R' U' R U' R' U' R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(2,5,4)(7,9)  => U R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,4,9)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R'
(1,6,10,8)(2,5)(4,9,7)  => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,7)(4,9)  => U R U R' U R U R' U2 R U R'
(1,6)(2,5)(3,10)(4,7)   => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R'
(1,6)(2,5,4,7,9)(3,10)  => U' R U' R' U' R U R'
(1,6)(2,5,9,4,7)(3,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U'
(1,6)(2,5,9)(3,10)      => U R' U2 R U R' U R2 U' R' U' R U R'
(1,6)(2,5,7)(3,10)      => R U2 R' U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6)(2,5)(3,10)(7,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(2,5)(3,10)(4,9)   => U R U R' U R U2 R' U' R U' R' U'
(1,6)(2,5,7,4,9)(3,10)  => U R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6)(2,5,4,9,7)(3,10)  => R' U' R U' R' U2 R U' R U' R' U' R U' R'
(1,6)(2,5,9,7,4)(3,10)  => U R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R'
(1,6)(2,5,4)(3,10)      => R U2 R' U R U R' U U R' U U R U R' U R
(1,6)(2,5,7,9,4)(3,10)  => R U R' U R U R' U'
(1,6,8,3)(2,5)(4,7,9)   => U' R U' R' U2 R U2 R' U'
(1,6,8,3)(2,5,4,7)      => R' U' R U' R' U2 R U
(1,6,8,3)(2,5,9)(4,7)   => U R U' R' U R U R' U2 R U R'
(1,6,8,3)(2,5)          => U R U R' U R U2 R' U2 R' U2 R U R' U R
(1,6,8,3)(2,5,9,7)      => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7,9)      => R U' R' U R U R' U2 R U' R' U' R U' R' U'
(1,6,8,3)(2,5)(4,9,7)   => U R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7)(4,9)   => U R U2 R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,6,8,3)(2,5,4,9)      => R' U' R U' R' U2 R R U' R' U2 R U2 R'
(1,6,8,3)(2,5,9,4)      => U R' U2 R U R' U R2 U' R' U2 R U2 R' U'
(1,6,8,3)(2,5,4)(7,9)   => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7,4)      => U R U R' U R U2 R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,5)(7,9)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(2,5,9)     => U R U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,5,7,9,4) => U R' U2 R U R' U R U' R U' R' U' R U R' U'
(1,6,3,8,10)(2,5,9,7,4) => U R U' R' U R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,4)     => U R U R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,4,9,7) => U' R U2 R' U' R U2 R' U2
(1,6,3,8,10)(2,5)(4,9)  => U2 R U' R' U' R U R' U'
(1,6,3,8,10)(2,5,7,4,9) => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U' R'
(1,6,3,8,10)(2,5,4,7,9) => R U' R' U R U U R' U R U R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,5)(4,7)  => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,5,9,4,7) => U R U' R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,7,9)(4,5)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U2 R'
(1,6,8,3)(2,7,4,5)      => U2 R' U' R U' R' U2 R U'
(1,6,8,3)(2,7)(4,5,9)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R' U'
(1,6,8,3)(2,7,5,4)      => U' R U2 R' U' R U' R' U2
(1,6,8,3)(2,7,9,4)      => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U2 R' U'
(1,6,8,3)(2,7,4)(5,9)   => R U R' U R U R' U2 R U' R' U' R U R' U'
(1,6,8,3)(2,7)(4,9,5)   => U R U2 R' U2 R U R' U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,8,3)(2,7,4,9)      => R U R' U R U R' U2 R U2 R'
(1,6,8,3)(2,7,5)(4,9)   => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(2,7,9,5)      => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,6,8,3)(2,7,5,9)      => U R U R' U R U2 R' U' R U' R' U2 R U2 R'
(1,6,8,3)(2,7)          => U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7)(4,5)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,7,4,5,9) => U R U' R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,7,9,4,5) => R U' R' U R U2 R' U R U R' U2 R U2 R' U' R U' R'
(1,6,3,8,10)(2,7,5,4,9) => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U' R'
(1,6,3,8,10)(2,7)(4,9)  => U R U R' U R U U R' U R U R' U
(1,6,3,8,10)(2,7,4,9,5) => U R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,7,9,5,4) => R U R' U R U2 R' U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(2,7,4)     => U R U R' U U R U R' U U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7,5,9,4) => U R U' R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7,5)     => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,7)(5,9)  => U R U' R' U R' U' R U' R' U2 R U'
(1,6,3,8,10)(2,7,9)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R'
(1,6)(2,7,9,4,5)(3,10)  => R U R' U R U R' U R' U2 R U R' U R
(1,6)(2,7,4,5,9)(3,10)  => U R U' R' U R U2 R' U R U R' U
(1,6)(2,7)(3,10)(4,5)   => R U R' U R U2 R' U2 R U' R' U' R U2 R'
(1,6)(2,7)(3,10)(5,9)   => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,7,5)(3,10)      => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U2 R'
(1,6)(2,7,9)(3,10)      => U' R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6)(2,7,5,4,9)(3,10)  => U R U R' U R' U' R U' R' U2 R U'
(1,6)(2,7,4,9,5)(3,10)  => U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6)(2,7)(3,10)(4,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U'
(1,6)(2,7,5,9,4)(3,10)  => R' U' R U' R' U2 R2 U' R' U'
(1,6)(2,7,9,5,4)(3,10)  => R U R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6)(2,7,4)(3,10)      => U R U R' U R U2 R' U R U' R' U' R U2 R'
(1,6,10,8)(2,7,4)(5,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U R' U'
(1,6,10,8)(2,7,9,4)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,7,5,4)     => R U R' U2 R U R2 U' R U' R' U2 R U'
(1,6,10,8)(2,7,9)(4,5)  => U' R U2 R' U' R U' R' U' R U' R'
(1,6,10,8)(2,7)(4,5,9)  => U' R U R' U2 R' U' R U' R' U2 R U'
(1,6,10,8)(2,7,4,5)     => R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(2,7)         => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U'
(1,6,10,8)(2,7,5,9)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R'
(1,6,10,8)(2,7,9,5)     => R U' R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,10,8)(2,7)(4,9,5)  => U' R U2 R' U' R U' R' U2 R U R' U'
(1,6,10,8)(2,7,5)(4,9)  => U R U R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,6,10,8)(2,7,4,9)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R'
(1,8)(2,7)(3,6)(4,5)    => U2
(1,8)(2,7,9,4,5)(3,6)   => U R' U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(2,7,4,5,9)(3,6)   => R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8)(2,7,9,5,4)(3,6)   => R U' R' U R U R' U U R U R' U R U R' U R U2 R' U
(1,8)(2,7,5,9,4)(3,6)   => U R U' R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,8)(2,7,4)(3,6)       => U R U2 R' U' R U' R' U'
(1,8)(2,7,5,4,9)(3,6)   => U R U2 R' U2 R U R' U U2 R U R' U R U2 R' U
(1,8)(2,7)(3,6)(4,9)    => U2 R U' R' U2 R U2 R' U'
(1,8)(2,7,4,9,5)(3,6)   => U R U2 R' U2 R U R' U R U2 R' U' R U' R' U'
(1,8)(2,7,5)(3,6)       => U R' U2 R U R' U R U'
(1,8)(2,7)(3,6)(5,9)    => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8)(2,7,9)(3,6)       => R U' R' U R U R' U2 R U R'
(1,8,6,10,3)(2,7,4,5,9) => U' R U R' U2
(1,8,6,10,3)(2,7,9,4,5) => R U' R' U'
(1,8,6,10,3)(2,7)(4,5)  => R U R' U2 R U R' U' R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,7,5,9,4) => U R' U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(2,7,9,5,4) => R U' R' U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,7,4)     => R U R' U U R U R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,7)(5,9)  => U' R U R' U' R U R' U R U2 R' U
(1,8,6,10,3)(2,7,9)     => U R U2 R' U
(1,8,6,10,3)(2,7,5)     => R U R' U2 R U R'
(1,8,6,10,3)(2,7,5,4,9) => U R U R' U R U2 R' U2 R U' R' U' R U R'
(1,8,6,10,3)(2,7,4,9,5) => U R U R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,8,6,10,3)(2,7)(4,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U'
(1,8,3,10)(2,7,9)(4,5)  => U R U R' U R U2 R' U2 R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,7,4,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,7)(4,5,9)  => R U R' U R U2 R' U R U' R' U' R U R' U'
(1,8,3,10)(2,7,4)(5,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U' R U' R' U'
(1,8,3,10)(2,7,9,4)     => U R U R' U R U R' U' R U R' U'
(1,8,3,10)(2,7,5,4)     => R' U' R U' R' U2 R U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,7)(4,9,5)  => U R U' R' U' R U' R' U'
(1,8,3,10)(2,7,4,9)     => U R U R' U U R U R' U R U2 R' U
(1,8,3,10)(2,7,5)(4,9)  => U R U R' U
(1,8,3,10)(2,7,9,5)     => R U R' U R U' R' U' R U' R'
(1,8,3,10)(2,7,5,9)     => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,7)         => R U2 R' U R U R' U2 R' U' R U' R' U2 R U'
(1,8,10,6)(2,7,4)(5,9)  => U R U' R' U
(1,8,10,6)(2,7,5,4)     => U R U R' U U R U R' U U
(1,8,10,6)(2,7,9,4)     => U R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(2,7,9)(4,5)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,7)(4,5,9)  => U R U' R' U2 R U R' U R U2 R' U
(1,8,10,6)(2,7,4,5)     => U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,8,10,6)(2,7)         => U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,8,10,6)(2,7,5,9)     => U R U R' U' R U' R' U'
(1,8,10,6)(2,7,9,5)     => R U' R' U R U2 R' U R U R' U2 R' U' R U' R' U2 R U'
(1,8,10,6)(2,7)(4,9,5)  => U R' U2 R U R' U R U2 R U' R' U
(1,8,10,6)(2,7,4,9)     => U' R U2 R' U' R U2 R' U' R U2 R' U' R U' R'
(1,8,10,6)(2,7,5)(4,9)  => R U' R' U' U' R U' R' U' R U' R' U'
(1,8)(2,4,5,9,7)(3,6)   => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U R'
(1,8)(2,4,5,7,9)(3,6)   => R U R' U R U2 R' U' R U' R' U2 R U2 R'
(1,8)(2,4,5)(3,6)       => R U R' U R U2 R'
(1,8)(2,4,7,5,9)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U2 R'
(1,8)(2,4,7)(3,6)       => U R U R' U R U2 R' U'
(1,8)(2,4,7,9,5)(3,6)   => R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,4)(3,6)(5,9)    => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R' U'
(1,8)(2,4)(3,6)(7,9)    => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(2,4)(3,6)(5,7)    => U' R U2 R' U' R U' R2 U2 R U R' U R U'
(1,8)(2,4,9,7,5)(3,6)   => U R U2 R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,4,9,5,7)(3,6)   => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8)(2,4,9)(3,6)       => U R U R' U R U2 R' U2 R U' R' U2 R U2 R'
(1,8,6,10,3)(2,4,5)     => U R' U2 R U R' U R U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,4,5,7,9) => R U' R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,4,5,9,7) => U' R U' R' U' R U' R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,4,9,5,7) => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,4,9,7,5) => U R U R' U R U R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,4,9)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U R'
(1,8,6,10,3)(2,4,7,5,9) => U' R U2 R' U' R U2 R' U' R U2 U' R'
(1,8,6,10,3)(2,4,7,9,5) => U' R U2 R' U' R U2 R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,4,7)     => U2 R U' R' U' R U2 R'
(1,8,6,10,3)(2,4)(5,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R'
(1,8,6,10,3)(2,4)(5,9)  => U' R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,6,10,3)(2,4)(7,9)  => R' U' R U' R' U2 R U' U2 R U' R' U' R U' R'
(1,8,3,10)(2,4,5,9)     => U R U' R' U R U U R' U R U R' U R U R' U R U2 R' U
(1,8,3,10)(2,4,5)(7,9)  => R U R' U R U R' U R U2 R' U' R U' R' U'
(1,8,3,10)(2,4,5,7)     => R U2 R' U R U R' U'
(1,8,3,10)(2,4)(5,9,7)  => U' R U2 R' U' R U' R' U2 U' R U' R' U2
(1,8,3,10)(2,4)         => R U' R' U' R U2 R' U'
(1,8,3,10)(2,4)(5,7,9)  => R U R' U R U R2 U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(2,4,7)(5,9)  => U R U R' U R U2 R' U2 R U' R' U' R U' R' U'
(1,8,3,10)(2,4,7,9)     => U' R U2 R' U' R U2 R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,4,7,5)     => R U2 R' U R U R' U R' U2 R U R' U R
(1,8,3,10)(2,4,9,5)     => R U R' U R U' U' R' U' R U' R' U' R U' R' U'
(1,8,3,10)(2,4,9)(5,7)  => U R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,3,10)(2,4,9,7)     => U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,4,7,5)     => U R U R' U2 R U' R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,4,7,9)     => R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,4,7)(5,9)  => U R U' R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,4,9,5)     => U R U R' U R U U R' U R U R' U' R' U' R U' R' U2 R U'
(1,8,10,6)(2,4,9)(5,7)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,4,9,7)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U R'
(1,8,10,6)(2,4,5)(7,9)  => R U' R' U R U2 R' U R U R' U'
(1,8,10,6)(2,4,5,7)     => U R' U2 R U R' U R2 U' R' U2 R U' R'
(1,8,10,6)(2,4,5,9)     => U R U' R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,4)(5,9,7)  => R' U' R U' R' U2 R U2 R U R'
(1,8,10,6)(2,4)(5,7,9)  => R' U' R U' R' U' U' R U' R U' R' U
(1,8,10,6)(2,4)         => U' R U' R' U2 R U' R'
(1,8,6,10,3)(2,9)(4,5)  => R U R' U R U U R' U R U R' U2
(1,8,6,10,3)(2,9,4,5,7) => R' U' R U' R' U2 R U2 R U' R' U'
(1,8,6,10,3)(2,9,7,4,5) => U R U R' U R U R' U' R U' R'
(1,8,6,10,3)(2,9,5,4,7) => R U R' U R U U R' U R U R2 U2 R U R' U R
(1,8,6,10,3)(2,9)(4,7)  => U R' U2 R U R' U R U2 R U' R' U' R U R'
(1,8,6,10,3)(2,9,4,7,5) => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(2,9,7,5,4) => R U R' U R U2 R' U R U' R' U' R U' R'
(1,8,6,10,3)(2,9,4)     => R U R' U R U U R' U R U R' U R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,9,5,7,4) => R U R' U R U U R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,6,10,3)(2,9)(5,7)  => U R U' R' U' R U R'
(1,8,6,10,3)(2,9,5)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U' R'
(1,8,3,10)(2,9,4,5)     => R U2 U R' U R U R' U R U R' U R U2 R' U
(1,8,3,10)(2,9)(4,5,7)  => R U' R' U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,3,10)(2,9,7)(4,5)  => R U' R' U R U R' U U R' U U R U R' U R
(1,8,3,10)(2,9,7,5)     => U2 R U' R' U2
(1,8,3,10)(2,9,5,7)     => U' R U2 R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,9)         => R U' R' U R U R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,9,5)(4,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U' R' U'
(1,8,3,10)(2,9)(4,7,5)  => R U' R' U R U R' U2 R U2 R' U' R U' R'
(1,8,3,10)(2,9,4,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U R' U'
(1,8,3,10)(2,9,5,4)     => R U' R' U R U R'
(1,8,3,10)(2,9,4)(5,7)  => R U' R' U R U R' U' R' U' R U' R' U2 R U'
(1,8,3,10)(2,9,7,4)     => U R' U2 R U R' U R U' R U' R' U2
(1,8)(2,9,4,5,7)(3,6)   => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U2 R' U'
(1,8)(2,9,7,4,5)(3,6)   => U R' U2 R U R' U R U R U' R' U2 R U' R' U' R U R'
(1,8)(2,9)(3,6)(4,5)    => U R U' R' U2 R U2 R'
(1,8)(2,9,5)(3,6)       => R U2 R' U2 R U2 R' U R U2 R' U
(1,8)(2,9)(3,6)(5,7)    => U R' U2 R U R' U R U2 R U' R' U2 R U2 R'
(1,8)(2,9,7)(3,6)       => R U' R' U2 R U' R' U' R U R'
(1,8)(2,9,7,5,4)(3,6)   => R U2 R' U2 R U R' U R U2 R' U' R U' R'
(1,8)(2,9,5,7,4)(3,6)   => R U2 R' U2 R U R' U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,9,4)(3,6)       => R U2 R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,8)(2,9,4,7,5)(3,6)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U2 R' U'
(1,8)(2,9,5,4,7)(3,6)   => R U U R' U2 R U R' U R' U2 R U R' U R
(1,8)(2,9)(3,6)(4,7)    => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8,10,6)(2,9,5)(4,7)  => R U R' U2 R U2 R' U' R U' R'
(1,8,10,6)(2,9,4,7)     => R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,9)(4,7,5)  => R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,9,7)(4,5)  => U R' U2 R U R' U R U R U R'
(1,8,10,6)(2,9,4,5)     => R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,9)(4,5,7)  => R U R' U U R' U U R U R' U R
(1,8,10,6)(2,9)         => R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,10,6)(2,9,7,5)     => R U R' U' R U2 R' U' R U' R' U'
(1,8,10,6)(2,9,5,7)     => R U R' U U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,10,6)(2,9,5,4)     => R U R' U' R' U' R U' R' U2 R U'
(1,8,10,6)(2,9,4)(5,7)  => U' R U2 R' (U' R U' R' (U' R U' R' U')2
(1,8,10,6)(2,9,7,4)     => R U R'
(1,8,6,10,3)(4,5,9)     => R U R' U R U2 R' U2 R U' R' U'
(1,8,6,10,3)(4,5,7)     => U R U R' U R U2 R' U R U R' U R U R' U' R U2 R'
(1,8,6,10,3)(4,5)(7,9)  => R U' R' U2 R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(4,7,5)     => R' U' R U' R' U2 R2 U' R' U' R U2 R'
(1,8,6,10,3)(4,7,9)     => R U' R' U R' U U R U R' U R
(1,8,6,10,3)(4,7)(5,9)  => U' R U R2 U2 R U R' U R
(1,8,6,10,3)(5,9,7)     => U' R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,8,6,10,3)            => R U R' U2 R U R' U U R' U2 R U R' U R
(1,8,6,10,3)(5,7,9)     => U R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(4,9)(5,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(4,9,5)     => U R U R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,8,6,10,3)(4,9,7)     => U R U R' U R U R' U2 R U R' U'
(1,8,3,10)(4,5)         => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U'
(1,8,3,10)(4,5,7,9)     => U' R U' R' U' R U R' U'
(1,8,3,10)(4,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2
(1,8,3,10)(4,7,5,9)     => U R' U2 R U R' U R2 U' R' U' R U R' U'
(1,8,3,10)(4,7)         => R U2 R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(4,7,9,5)     => R U R' U R U R' U R' U' R U' R' U2 R U'
(1,8,3,10)(4,9,7,5)     => U R U R' U R U2 R' U' R U' R' U2
(1,8,3,10)(4,9)         => U R U R' U2 U R' U2 R U R' U R
(1,8,3,10)(4,9,5,7)     => R' U' R U' R' U2 R U' R U' R' U' R U' R' U'
(1,8,3,10)(5,9)         => U R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(5,7)         => R U2 R' U R U2 R' U R U2 R' U
(1,8,3,10)(7,9)         => R U R' U R U R' U U
(1,8)(3,6)(4,5)(7,9)    => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(3,6)(4,5,7)       => R' U' R U' R' U2 R
(1,8)(3,6)(4,5,9)       => U R U' R' U R U R' U2 R U R' U'
(1,8)(3,6)(4,7,5)       => R' U2 R U R' U R
(1,8)(3,6)(4,7)(5,9)    => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U R' U'
(1,8)(3,6)(4,7,9)       => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(3,6)(4,9,5)       => U R U' R' U2 R U' R' U' R U R' U'
(1,8)(3,6)(4,9,7)       => U R U2 R' U2 R U R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8)(3,6)(4,9)(5,7)    => R' U' R U' R' U2 R R U' R' U2 R U2 R' U'
(1,8)(3,6)(5,9,7)       => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U R'
(1,8)(3,6)(5,7,9)       => R U' R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,8)(3,6)              => U R U R' U R U2 R' U R U R' U R U2 R'
(1,8,10,6)(4,7,9,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U
(1,8,10,6)(4,7,5,9)     => U R U R' U R U2 R' U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(4,7)         => U R U R' U2 R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,8,10,6)(7,9)         => R U' R' U R U2 R' U R U2 R' U R U2 R' U
(1,8,10,6)(5,9)         => U R U' R2 U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,10,6)(5,7)         => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U2 R U' R' U2 R U' R'
(1,8,10,6)(4,9,5,7)     => U' R U2 R' U' R U2 R' U
(1,8,10,6)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2 R U R'
(1,8,10,6)(4,9)         => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U' R' U'
(1,8,10,6)(4,5,7,9)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(4,5)         => U R U R' U2 R U R' R' U2 R U R' U R
(1,8,10,6)(4,5,9,7)     => U' R U2 R' U' R U' R' U' R U R'
(1,8)(2,5,7,9,4)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(2,5,4)(3,6)       => R U2 R' U' R U' R'
(1,8)(2,5,9,7,4)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U' R' U' R U R'
(1,8)(2,5,7)(3,6)       => U R' U' R U' R' U2 R U'
(1,8)(2,5)(3,6)(7,9)    => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(2,5,9)(3,6)       => U' R U2 R' U' R U2 R' U2 R U2 R'
(1,8)(2,5,7,4,9)(3,6)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8)(2,5)(3,6)(4,9)    => R U R' U R U R' U2 R U2 R' U'
(1,8)(2,5,4,9,7)(3,6)   => U R U2 R' U2 R U R' U R' U' R U' R' U2 R U'
(1,8)(2,5,4,7,9)(3,6)   => R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,8)(2,5,9,4,7)(3,6)   => U R U R' U R U2 R' U' R U' R' U2 R U2 R' U'
(1,8)(2,5)(3,6)(4,7)    => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R
(1,8,10,6)(2,5,7,4)     => R U R' U R U2 R' U R U' R' U2 R U' R'
(1,8,10,6)(2,5,9,4)     => U R U' R2 U' R U' R' U2 R U'
(1,8,10,6)(2,5,4)(7,9)  => R U R' U R U2 R' U2 R U R'
(1,8,10,6)(2,5,7)(4,9)  => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U' R' U'
(1,8,10,6)(2,5)(4,9,7)  => U R U R' U R U2 R' U R U R'
(1,8,10,6)(2,5,4,9)     => U R' U2 R U R' U R U2 R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5,7,9)     => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5)         => U R U R' U R U R' U2 R U' R'
(1,8,10,6)(2,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U R'
(1,8,10,6)(2,5,4,7)     => U R U R' U2 R U' R' U' R U' R'
(1,8,10,6)(2,5,9)(4,7)  => U R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5)(4,7,9)  => R U' R' U R U2 R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,5,4)(7,9)  => R U R' U R U R' U U2 R U R' U R U2 R' U
(1,8,3,10)(2,5,9,4)     => U R U' R' U R U2 R' U R U R'
(1,8,3,10)(2,5,7,4)     => R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,5,9)(4,7)  => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U' R'
(1,8,3,10)(2,5,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U2 R' U'
(1,8,3,10)(2,5)(4,7,9)  => U' R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8,3,10)(2,5,7)(4,9)  => U R U R' U' R U2 R' U' R U' R'
(1,8,3,10)(2,5,4,9)     => U R U R' U' R' U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(2,5)(4,9,7)  => U R U R2 U' R U' R' U2 R U'
(1,8,3,10)(2,5,9,7)     => R' U' R U' R' U2 R2 U' R' U2
(1,8,3,10)(2,5,7,9)     => U R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,5)         => U R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,8,6,10,3)(2,5,9)     => U' R U R' U R' U' R U' R' U2 R U'
(1,8,6,10,3)(2,5)(7,9)  => R U' R' U2 R' U' R U' R' U2 R U'
(1,8,6,10,3)(2,5,7)     => U R U R' U R U' U' R' U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,5,7,9,4) => R U' R' U R U2 R' U' R U' R'
(1,8,6,10,3)(2,5,9,7,4) => U' R U' R' U' R U' R'
(1,8,6,10,3)(2,5,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,5)(4,7)  => R U R' U R U R' U' R U2 R'
(1,8,6,10,3)(2,5,9,4,7) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U'
(1,8,6,10,3)(2,5,4,7,9) => R U' R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,6,10,3)(2,5,7,4,9) => U R U R' U R U R' U2 R U R' U R' U2 R U R' U R
(1,8,6,10,3)(2,5,4,9,7) => U R' U2 R U R' U R2 U' R' U' R U' R'
(1,8,6,10,3)(2,5)(4,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U'
(1,3,8,6)(2,5,7,4)      => U
(1,3,8,6)(2,5,4)(7,9)   => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U R'
(1,3,8,6)(2,5,9,4)      => R' U' R U' R' U2 R U' R U' R' U2 R U2 R' U'
(1,3,8,6)(2,5,7,9)      => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,5,9,7)      => U R U' R' U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,3,8,6)(2,5)          => U R U R' U R U2 R' U R' U' R U' R' U2 R U'
(1,3,8,6)(2,5,7)(4,9)   => U R U2 R' U2 R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3,8,6)(2,5)(4,9,7)   => U R U2 R' U2 R U R' U
(1,3,8,6)(2,5,4,9)      => U R' U2 R U R' U R U R U' R' U2 R U2 R'
(1,3,8,6)(2,5,4,7)      => U R' U2 R U R' U R U2
(1,3,8,6)(2,5,9)(4,7)   => R U' R' U2 R U2 R'
(1,3,8,6)(2,5)(4,7,9)   => R U' R' U R U R' U2 R U R' U'
(1,3,6,10)(2,5,9,4)     => U' R U R' U
(1,3,6,10)(2,5,4)(7,9)  => R U' R' U2
(1,3,6,10)(2,5,7,4)     => U' R U2 R' U' R U' R' U R U' R' U' R U2 R' U'
(1,3,6,10)(2,5,9,7)     => U R' U2 R U R' U R U R U' R' U2
(1,3,6,10)(2,5,7,9)     => R U' R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3,6,10)(2,5)         => U' R U2 R' U' R U' R' U' R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(2,5,9)(4,7)  => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U' R'
(1,3,6,10)(2,5)(4,7,9)  => R U R' U' R U' R' U R U R' U R U2 R' U
(1,3,6,10)(2,5,4,7)     => R U R' U2 R U R' U'
(1,3,6,10)(2,5,7)(4,9)  => U R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,3,6,10)(2,5,4,9)     => U R U R' U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,3,6,10)(2,5)(4,9,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U2
(1,3,10,6,8)(2,5,7,9,4) => U R U R' U R U2 R' U2 R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5,4)     => R U2 R' U R U R' U R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,5,9,7,4) => U R U' R' U R U2 R' U R U2 R' U R U2 R' U
(1,3,10,6,8)(2,5,9)     => U R U' R' U R U2 R' U R U R' U R' U2 R U R' U R
(1,3,10,6,8)(2,5)(7,9)  => U R' U2 R U R' U R U2 R U R'
(1,3,10,6,8)(2,5,7)     => R U' R' U2 R U' R'
(1,3,10,6,8)(2,5,7,4,9) => U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,5)(4,9)  => U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3,10,6,8)(2,5,4,9,7) => U R U R'
(1,3,10,6,8)(2,5,4,7,9) => R U R' U R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5,9,4,7) => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5)(4,7)  => R U2 R' U R U' R' U' R U' R'
(1,3)(2,5,9)(8,10)      => U R U' R'
(1,3)(2,5,7)(8,10)      => U R U R' U U R U R' U
(1,3)(2,5)(7,9)(8,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U' R U2 R' U' R U R'
(1,3)(2,5,7,9,4)(8,10)  => R U' R' U R U2 R' U R U R' U R' U' R U' R' U2 R U'
(1,3)(2,5,9,7,4)(8,10)  => U R U' R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3)(2,5,4)(8,10)      => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(2,5)(4,7)(8,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U' R' U'
(1,3)(2,5,9,4,7)(8,10)  => U R U' R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3)(2,5,4,7,9)(8,10)  => R U' R' U R U2 R' U R U2 U R' U' R U' R'
(1,3)(2,5,7,4,9)(8,10)  => U R' U2 R U R' U R U2 R U' R'
(1,3)(2,5)(4,9)(8,10)   => U' R U2 R' U' R U2 R' U' R U2 R' U' R U' R' U'
(1,3)(2,5,4,9,7)(8,10)  => U R U R' U R U U R' U R U R' U R' U U R U R' U R
(1,3,8,6)(2,7,4)(5,9)   => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,3,8,6)(2,7,9,4)      => R U R' U R U2 R' U' R U' R' U2 R U2 R' U'
(1,3,8,6)(2,7,5,4)      => R U R' U R U2 R' U'
(1,3,8,6)(2,7)(4,5,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U2 R' U'
(1,3,8,6)(2,7,4,5)      => U R U R' U R U2 R' U2
(1,3,8,6)(2,7,9)(4,5)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,7,5,9)      => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,7,9,5)      => R U' R' U R U R' U2 R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,8,6)(2,7)          => U' R U2 R' U' R U' R2 U2 R U R' U R U2
(1,3,8,6)(2,7)(4,9,5)   => U R U2 R' U2 R U R' U U2 R' U2 R U R' U R U R U R' U R U2 R' U
(1,3,8,6)(2,7,4,9)      => U' R U2 R' U' R U' R' U' R U' R' U2 R U2 R'
(1,3,8,6)(2,7,5)(4,9)   => U R U R' U R U2 R' U2 R U' R' U2 R U2 R' U'
(1,3,6,10)(2,7,5,4)     => R U R' U2 R U R' U R' U2 R U R' U R
(1,3,6,10)(2,7,9,4)     => R U' R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,7,4)(5,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R R U' R' U' R U' R' U'
(1,3,6,10)(2,7,4,9)     => U R U R' U R U R' U U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(2,7)(4,9,5)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,3,6,10)(2,7,5)(4,9)  => U R U R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(1,3,6,10)(2,7)(4,5,9)  => U' R U2 R' U' R U2 R' U' R U2 U' R' U'
(1,3,6,10)(2,7,9)(4,5)  => R U' R2 U2 R U R' U R
(1,3,6,10)(2,7,4,5)     => U2 R U' R' U' R U2 R' U'
(1,3,6,10)(2,7)         => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R' U'
(1,3,6,10)(2,7,5,9)     => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,7,9,5)     => R' U' R U' R' U2 R U' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,7,5,9,4) => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,7,9,5,4) => U' R U2 R' U' R U' R' U' R U R' U R U R' U
(1,3,10,6,8)(2,7,4)     => R U2 R' U R U R' U2
(1,3,10,6,8)(2,7)(5,9)  => U' R U2 R' U' R U' R' U2 U' R U' R' U2 U'
(1,3,10,6,8)(2,7,5)     => R U R' U R U' U' R' U2 R U' R' U2 R U' R'
(1,3,10,6,8)(2,7,9)     => R U R' U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(2,7,4,5,9) => R' U' R U' R' U2 R2 U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,7,9,4,5) => R U R' U R U R2 U' R U' R' U2 R U'
(1,3,10,6,8)(2,7)(4,5)  => U R U R' U R U2 R' U R U' R' U2 R U' R'
(1,3,10,6,8)(2,7,5,4,9) => U R U R' U U R' U U R U R' U R
(1,3,10,6,8)(2,7)(4,9)  => U R U R' U U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,7,4,9,5) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U
(1,3)(2,7)(4,5)(8,10)   => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U'
(1,3)(2,7,9,4,5)(8,10)  => R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(2,7,4,5,9)(8,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U' R'
(1,3)(2,7,5,4,9)(8,10)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R'
(1,3)(2,7)(4,9)(8,10)   => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(2,7,4,9,5)(8,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U R' U'
(1,3)(2,7,9,5,4)(8,10)  => R U' R' U R U2 R' U R U R' U2
(1,3)(2,7,4)(8,10)      => U R' U2 R U R' U R2 U' R' U2 R U' R' U'
(1,3)(2,7,5,9,4)(8,10)  => U R U' R' U2 R' U U R U R' U R U R U R' U R U2 R' U
(1,3)(2,7)(5,9)(8,10)   => R' U' R U' R' U2 R U2 R U R' U'
(1,3)(2,7,9)(8,10)      => R' U' R U' R' U' U' R U' R U' R'
(1,3)(2,7,5)(8,10)      => U' R U' R' U' U' R U' R' U'
(1,3,6,10)(2,9,4)(5,7)  => R U R' U R U U R' U R U R' U
(1,3,6,10)(2,9,7,4)     => R' U' R U' R' U2 R U2 R U' R' U2
(1,3,6,10)(2,9,5,4)     => U R U R' U R U R' U' R U' R' U'
(1,3,6,10)(2,9)(4,5,7)  => R U R' U R U U R' U R U R' U2 R U R' U R U2 R' U
(1,3,6,10)(2,9,4,5)     => U R' U2 R U R' U R U2 R U' R' U' R U R' U'
(1,3,6,10)(2,9,7)(4,5)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U2
(1,3,6,10)(2,9,5,7)     => R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,3,6,10)(2,9,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2
(1,3,6,10)(2,9)         => U R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,9,4,7)     => U R U' R' U' R U R' U'
(1,3,6,10)(2,9)(4,7,5)  => U' R U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,9,5)(4,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R R U' R' U' R U' R' U'
(1,3,10,6,8)(2,9,7,5,4) => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U R'
(1,3,10,6,8)(2,9,4)     => R U' R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,3,10,6,8)(2,9,5,7,4) => R U U2 R' U R U2 R' U R U2 R' U
(1,3,10,6,8)(2,9,5,4,7) => U2 R U' R' U
(1,3,10,6,8)(2,9)(4,7)  => R U' R' U R U R' U2 R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,9,4,7,5) => R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,9)(4,5)  => U2 R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,9,4,5,7) => R U' R' U R U R' U2 R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,9,7,4,5) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U R'
(1,3,10,6,8)(2,9)(5,7)  => R U' R' U R U R' U'
(1,3,10,6,8)(2,9,7)     => U' R U2 R' U'
(1,3,10,6,8)(2,9,5)     => U R' U2 R U R' U R U' R U' R' U
(1,3,8,6)(2,9,7,4)      => R U2 R' U2 R U R' U R' U' R U' R' U2 R U'
(1,3,8,6)(2,9,5,4)      => U R' U2 R U R' U R U R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(2,9,4)(5,7)   => U R U' R' U2 R U2 R' U'
(1,3,8,6)(2,9)(4,7,5)   => R U R' U R U' U' R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,9,4,7)      => R U2 R' U2 R U' R' U' R U' R'
(1,3,8,6)(2,9,5)(4,7)   => R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(2,9,5,7)      => R U2 R' U2 R U R' U R U2 R' U' R U' R' U'
(1,3,8,6)(2,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U2 R'
(1,3,8,6)(2,9,7,5)      => U R U R' U R U R' U2 R U' R' U' R U R'
(1,3,8,6)(2,9,7)(4,5)   => R U2 R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(2,9)(4,5,7)   => U R U R' U R U2 R' U R U' R' U2 R U2 R'
(1,3,8,6)(2,9,4,5)      => R U2 R' U2 R U R' R' U2 R U R' U R
(1,3)(2,9)(4,5)(8,10)   => U R U R' U R U2 R' U2 R U' R'
(1,3)(2,9,7,4,5)(8,10)  => R U R' U R U' U2 R' U' R U2 R' U' R U R'
(1,3)(2,9,4,5,7)(8,10)  => R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3)(2,9,5,7,4)(8,10)  => U R' U2 R U R' U R U R U R' U'
(1,3)(2,9,7,5,4)(8,10)  => R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,3)(2,9,4)(8,10)      => R U2 R' U R U2 R' U
(1,3)(2,9,4,7,5)(8,10)  => R U R' U2 R' U' R U' R' U2 R U'
(1,3)(2,9,5,4,7)(8,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U R' U'
(1,3)(2,9)(4,7)(8,10)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R'
(1,3)(2,9)(5,7)(8,10)   => R U R' U R U2 R' U' R U' R'
(1,3)(2,9,7)(8,10)      => R U R' U R' U2 R U R' U R
(1,3)(2,9,5)(8,10)      => R U R' U'
(1,3,6,10)(2,4)(5,9,7)  => R U R' U R U2 R' U2 R U' R' U2
(1,3,6,10)(2,4)         => U R U R' U R U2 R' U R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(2,4)(5,7,9)  => R U' R' U R' U' R U' R' U2 R U'
(1,3,6,10)(2,4,5,7)     => R' U' R U' R' U2 R2 U' R' U' R U2 R' U'
(1,3,6,10)(2,4,5)(7,9)  => U R U R' U R U2 R' U R U' R' U2
(1,3,6,10)(2,4,5,9)     => U U2 R U R' U2 R U R' U R U2 R' U
(1,3,6,10)(2,4,7)(5,9)  => U' R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,4,7,5)     => R U R' U2 R U2 R' U R U2 R' U
(1,3,6,10)(2,4,7,9)     => R U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,4,9,7)     => U R U R' U R U R' U2 R U R' R' U2 R U R' U R
(1,3,6,10)(2,4,9)(5,7)  => U R U R' U R U R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,4,9,5)     => U R U R' U R U R' U U R U R' U U
(1,3,10,6,8)(2,4)(5,7)  => R U2 R' U R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,4)(7,9)  => R U R' U R U R' U U2 R' U2 R U R' U R
(1,3,10,6,8)(2,4)(5,9)  => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U
(1,3,10,6,8)(2,4,5,9,7) => U R U R' U R U2 R' U2 R U R'
(1,3,10,6,8)(2,4,5)     => R U2 R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(2,4,5,7,9) => R U R' U R U R' U' R U2 R' U' R U' R'
(1,3,10,6,8)(2,4,9,5,7) => U R U R' U' R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,4,9,7,5) => R U R' U R U2 R' U' R U R'
(1,3,10,6,8)(2,4,9)     => U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,4,7,5,9) => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,4,7)     => U' R U2 R' U' R U' R' U' R U' R' U2 R U' R'
(1,3,10,6,8)(2,4,7,9,5) => R U R' U R U R' U
(1,3,8,6)(2,4)(5,7,9)   => R U' R' U R U R' U U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,8,6)(2,4)          => R' U' R U' R' U2 R U'
(1,3,8,6)(2,4)(5,9,7)   => U' R U' R' U' U' R U' R' U' R U R'
(1,3,8,6)(2,4,5,7)      => U2 R U R' U R U2 R' U
(1,3,8,6)(2,4,5,9)      => U R U' R' U R U R' U2 R U R' R' U2 R U R' U R
(1,3,8,6)(2,4,5)(7,9)   => R U' R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,3,8,6)(2,4,9)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,4,9,5)      => U R U2 R' U2 R U R2 U' R U' R' U2 R U'
(1,3,8,6)(2,4,9,7)      => U R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R'
(1,3,8,6)(2,4,7)(5,9)   => U R U' R' U R U R' U2 R U' R' U' R U' R'
(1,3,8,6)(2,4,7,9)      => R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,4,7,5)      => U R U R' U R U2 R' U R U R' U R U2 R' U'
(1,3)(2,4,5,7,9)(8,10)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R'
(1,3)(2,4,5,9,7)(8,10)  => U2 R U' R' U' R U2 R' U' R U R'
(1,3)(2,4,5)(8,10)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(2,4,7,9,5)(8,10)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U R' U'
(1,3)(2,4,7,5,9)(8,10)  => U R U' R' U' R' U' R U' R' U2 R U'
(1,3)(2,4,7)(8,10)      => U R U R' U2 R U R2 U' R U' R' U2 R U'
(1,3)(2,4,9)(8,10)      => U' R U2 R' U' R U2 R'
(1,3)(2,4,9,5,7)(8,10)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2 R U R' U'
(1,3)(2,4,9,7,5)(8,10)  => U R' U2 R U R' U R U' R U' R' U' R U2 R' U' R U R'
(1,3)(2,4)(7,9)(8,10)   => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R'
(1,3)(2,4)(5,7)(8,10)   => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U'
(1,3)(2,4)(5,9)(8,10)   => U' R U2 R' U' R U' R' U' R U R' U'
(1,3,8,6)(7,9)          => R U' R' U R U R' U U R U R' U U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(5,7)          => R U2 R' U' R U' R' U'
(1,3,8,6)(5,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(4,7)          => U' R U2 R' U' R U' R'
(1,3,8,6)(4,7,9,5)      => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(4,7,5,9)      => U' R U2 R' U' R U2 R' U' U' R U2 R' U'
(1,3,8,6)(4,9)          => U R U2 R' U2 R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(4,9,7,5)      => U R U2 R' U2 R U' R' U' R U' R' U'
(1,3,8,6)(4,9,5,7)      => U R U2 R' U2 R U R' U' R U2 R' U' R U' R'
(1,3,8,6)(4,5,7,9)      => R U' R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,3,8,6)(4,5,9,7)      => U R U' R' U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,3,8,6)(4,5)          => R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3)(8,10)             => R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(5,9,7)(8,10)      => U R U' R' U2 R U2 R' U' R U' R'
(1,3)(5,7,9)(8,10)      => R U R' U R U2 R' U2 R U R' U'
(1,3)(4,9,7)(8,10)      => U R U R' U R U2 R' U R U R' U R U' U2 R' U' R U2 R' U' R U R'
(1,3)(4,9,5)(8,10)      => U R U R' U R U2 R' U R U R' U'
(1,3)(4,9)(5,7)(8,10)   => U R' U2 R U R' U R U2 R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(4,7,9)(8,10)      => R U' R' U R U2 R' U R U2 U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3)(4,7,5)(8,10)      => U R U R' U R U R' U2 R U' R' U'
(1,3)(4,7)(5,9)(8,10)   => U' R U2 R' U' R U' R2 U2 R U R' U R U R U R' U'
(1,3)(4,5,7)(8,10)      => U R U R' U2 R U' R' U' R U' R' U'
(1,3)(4,5,9)(8,10)      => U R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(4,5)(7,9)(8,10)   => R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R'
(1,3,10,6,8)(5,7,9)     => U R U R' U R U2 R' U R U R' U R U R' U
(1,3,10,6,8)(5,9,7)     => U R U' R' U R U2 R' U R U R' U'
(1,3,10,6,8)            => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R'
(1,3,10,6,8)(4,5,9)     => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(4,5,7)     => R U2 R' U R U R2 U2 R U R' U R
(1,3,10,6,8)(4,5)(7,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U R'
(1,3,10,6,8)(4,9,7)     => R' U' R U' R' U' U' R U' R U R'
(1,3,10,6,8)(4,9)(5,7)  => U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(4,9,5)     => U R U R' U2 R U2 R' U' R U' R'
(1,3,10,6,8)(4,7)(5,9)  => R' U' R U' R' U2 R2 U' R' U
(1,3,10,6,8)(4,7,9)     => U R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(4,7,5)     => R U2 R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(4,7,5,9)     => U' R U R' U' R U2 R' U' R U' R'
(1,3,6,10)(4,7,9,5)     => R U R' U' R U' R'
(1,3,6,10)(4,7)         => U R U R' U R U' U' R' U' R U' R' U' R U2 R' U'
(1,3,6,10)(7,9)         => R U' R' U R U2 R' U' R U' R' U'
(1,3,6,10)(5,9)         => U' R U' R' U' R U' R' U'
(1,3,6,10)(5,7)         => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U2 R' U'
(1,3,6,10)(4,5)         => R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(4,5,9,7)     => U' R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(4,5,7,9)     => R U' R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(4,9)         => U R U R' U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,3,6,10)(4,9,5,7)     => U R' U2 R U R' U R R U' R' U' R U' R' U'
(1,3,6,10)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U2
(1,10,8,3,6)(2,7,5,4,9) => U' R U' R'
(1,10,8,3,6)(2,7,4,9,5) => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U R' U'
(1,10,8,3,6)(2,7)(4,9)  => U' R U' R' U' R U' U' R' U' R U' R' U'
(1,10,8,3,6)(2,7,9,5,4) => U2 R U R' U'
(1,10,8,3,6)(2,7,4)     => R' U' R U' R' U2 R U' R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,7,5,9,4) => U R U R' U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,7)(4,5)  => U R U2 R' U R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,8,3,6)(2,7,4,5,9) => U R U R' U R U R' U' R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,7,9,4,5) => U2 R U2 R' U R U2 R' U
(1,10,8,3,6)(2,7,9)     => U R' U2 R U R' U R2 U' R'
(1,10,8,3,6)(2,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,7)(5,9)  => U R' U2 R U R' U R U' R U R' U'
(1,10,6,3)(2,7,4,9)     => U R U' R' U R U R' U'
(1,10,6,3)(2,7,5)(4,9)  => U R U' R' U R U R' U2 R U2 R' U' R U' R' U'
(1,10,6,3)(2,7)(4,9,5)  => R' U' R U' R' U2 R U' U2 R U' R' U
(1,10,6,3)(2,7,5,4)     => U R U2 R' U R U R2 U2 R U R' U R
(1,10,6,3)(2,7,4)(5,9)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U
(1,10,6,3)(2,7,9,4)     => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(2,7)         => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R'
(1,10,6,3)(2,7,5,9)     => U R U R' U R U R' U' R U2 R' U' R U' R'
(1,10,6,3)(2,7,9,5)     => U2 R U R' U' R' U' R U' R' U2 R U'
(1,10,6,3)(2,7,4,5)     => U R U' R' U2 R U' R'
(1,10,6,3)(2,7,9)(4,5)  => U2 R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,10,6,3)(2,7)(4,5,9)  => U R U R' U R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10)(2,7)(4,9)(6,8)   => U R' U2 R U R' U R U R U' R' U' R U R' U'
(1,10)(2,7,4,9,5)(6,8)  => U' R U2 R' U' R U' R' U' R U R' U R U R' U' R U' R' U'
(1,10)(2,7,5,4,9)(6,8)  => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,7,4)(6,8)      => U R U2 R' U R U2 R' U R U2 R' U
(1,10)(2,7,9,5,4)(6,8)  => U' R U2 R' U' R U' R' U2 U' R U' R' U' R U' R' U'
(1,10)(2,7,5,9,4)(6,8)  => R U' R' U' R U R' U'
(1,10)(2,7,9)(6,8)      => U2 R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10)(2,7)(5,9)(6,8)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R R U' R' U' R U' R' U'
(1,10)(2,7,5)(6,8)      => U R U2 R' U R U R' U'
(1,10)(2,7,9,4,5)(6,8)  => U2 R U R' U' R U2 R' U' R U' R'
(1,10)(2,7)(4,5)(6,8)   => U R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,10)(2,7,4,5,9)(6,8)  => U2 R U' R' U2 R U' R' U' R U' R'
(1,10,3,8)(2,7,5,4)     => U R U' R' U' R U2 R'
(1,10,3,8)(2,7,9,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U'
(1,10,3,8)(2,7,4)(5,9)  => U R U R' U R U R' U2 R U2 R' U' R U' R' U'
(1,10,3,8)(2,7)(4,5,9)  => U R U R' U R U R' U'
(1,10,3,8)(2,7,4,5)     => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(2,7,9)(4,5)  => R' U' R U' R' U2 R U2 R U' R' U' R U R'
(1,10,3,8)(2,7)(4,9,5)  => U R U' R' U R U R' U' R U2 R' U' R U' R'
(1,10,3,8)(2,7,5)(4,9)  => R U R' U R U2 R' U R U' R' U'
(1,10,3,8)(2,7,4,9)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U R'
(1,10,3,8)(2,7,5,9)     => U R U R' U R U2 R' U R U2 R' U
(1,10,3,8)(2,7)         => U R' U2 R U R' U R U2 R U' R' U' R U2 R'
(1,10,3,8)(2,7,9,5)     => U2 R U R2 U2 R U R' U R
(1,10,8,3,6)(2,4,9)     => R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,4,9,5,7) => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U R' U'
(1,10,8,3,6)(2,4,9,7,5) => U R U' R' U R U R' U R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,4,7,5,9) => U R U R' U R U R'
(1,10,8,3,6)(2,4,7,9,5) => U R U R' U R U2 R' U' R U R' U'
(1,10,8,3,6)(2,4)(7,9)  => U2 R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,4)(5,9)  => R U R' U R U' R' U'
(1,10,8,3,6)(2,4)(5,7)  => U R U2 R' U R U' R' U' R U' R' U'
(1,10,8,3,6)(2,4,5,7,9) => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R'
(1,10,8,3,6)(2,4,5)     => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,4,5,9,7) => U R U R' U R U R' U2 R U2 R' U' R U' R'
(1,10,6,3)(2,4,9,5)     => U' R U' R' U
(1,10,6,3)(2,4,9)(5,7)  => U' R U' R' U' R U' U' R' U' R U' R'
(1,10,6,3)(2,4,9,7)     => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U R'
(1,10,6,3)(2,4,5)(7,9)  => U2 R U R'
(1,10,6,3)(2,4,5,7)     => R' U' R U' R' U2 R U' R U' R' U2 R U' R'
(1,10,6,3)(2,4,5,9)     => U R U R' U R U' R' U' R U' R' U'
(1,10,6,3)(2,4,7,5)     => U R U2 R' U R U R' U' R U R' U R U2 R' U
(1,10,6,3)(2,4,7,9)     => U2 R U R' U U R' U U R U R' U R
(1,10,6,3)(2,4,7)(5,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U2 R U' R' U
(1,10,6,3)(2,4)         => U R U2 R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,4)(5,7,9)  => U R' U2 R U R' U R2 U' R' U
(1,10,6,3)(2,4)(5,9,7)  => U R' U2 R U R' U R U' R U R'
(1,10)(2,4,9,5,7)(6,8)  => U R U' R' U R U R'
(1,10)(2,4,9,7,5)(6,8)  => R' U' R U' R' U2 R U' U2 R U' R' U2
(1,10)(2,4,9)(6,8)      => U R U' R' U R U R' U2 R U2 R' U' R U' R'
(1,10)(2,4,5)(6,8)      => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(2,4,5,7,9)(6,8)  => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U' R'
(1,10)(2,4,5,9,7)(6,8)  => U R U R' U R U R' U' R U R' U R U2 R' U
(1,10)(2,4)(6,8)(7,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2
(1,10)(2,4)(5,7)(6,8)   => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U'
(1,10)(2,4)(5,9)(6,8)   => U R' U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10)(2,4,7,9,5)(6,8)  => U' U' R U' R' U' R U' R' U'
(1,10)(2,4,7)(6,8)      => U' R U2 R' U' R U2 R' U' R U2 R' U'
(1,10)(2,4,7,5,9)(6,8)  => U R U R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,4,7,5)     => U R U R' U R U2 R' U2 R U' R' U' R U2 R'
(1,10,3,8)(2,4,7)(5,9)  => U R U R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,4,7,9)     => U2 R U R' U R' U' R U' R' U2 R U'
(1,10,3,8)(2,4,9,7)     => U R U' R' U R U' R' U' R U' R' U'
(1,10,3,8)(2,4,9,5)     => R U' R' U' R U2 R' U' R U R' U'
(1,10,3,8)(2,4,9)(5,7)  => U R' U2 R U R' U R U R U' R' U' R U R'
(1,10,3,8)(2,4,5,9)     => R U' R' U' R U R'
(1,10,3,8)(2,4,5)(7,9)  => U' R U2 R' U' R U' R' U2 U' R U' R' U' R U' R'
(1,10,3,8)(2,4,5,7)     => U R U2 R' U R U R' U U R' U U R U R' U R
(1,10,3,8)(2,4)         => U R U2 R' U R U R'
(1,10,3,8)(2,4)(5,7,9)  => U2 R U R' U U2 R U R' U R U2 R' U
(1,10,3,8)(2,4)(5,9,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U' R U' R'
(1,10,8,3,6)(2,5,7,4,9) => R' U' R U' R' U2 R U' U2 R U' R'
(1,10,8,3,6)(2,5)(4,9)  => U R U' R' U R U R' U2
(1,10,8,3,6)(2,5,4,9,7) => R U R' U R U2 R' U2 R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,5,7)     => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,5)(7,9)  => U2 R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,10,8,3,6)(2,5,9)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,5,7,9,4) => U2 R U R' U2 R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,5,4)     => U R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,5,9,7,4) => U R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,5,4,7,9) => U2 R U R' U R U2 R' U' R U' R'
(1,10,8,3,6)(2,5)(4,7)  => U R U2 R' U R U R' U2 U R' U2 R U R' U R
(1,10,8,3,6)(2,5,9,4,7) => U R U R' U R U R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,4,9)     => U R U' R' U R U R' U2 R' U' R U' R' U2 R U'
(1,10,6,3)(2,5,7)(4,9)  => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,5)(4,9,7)  => U' R U2 R' U' R U' R' U' R U R' U R U' R'
(1,10,6,3)(2,5,4,7)     => U R U2 R' U R U R' U2
(1,10,6,3)(2,5,9)(4,7)  => U R U R' U R U R' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,6,3)(2,5)(4,7,9)  => U2 R U R' U U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,4)(7,9)  => U' R U2 R' U' R U' R' U R U R'
(1,10,6,3)(2,5,9,4)     => U2 R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(2,5,7,4)     => U' R U2 R' U' R U2 R' U2 R U' R'
(1,10,6,3)(2,5)         => U R U2 R' U R U' R' U' R U' R' U R U R' U R U2 R' U
(1,10,6,3)(2,5,7,9)     => U2 R U R' U2 R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,9,7)     => U R U R' U R U R' U' R' U2 R U R' U R
(1,10)(2,5,4,9,7)(6,8)  => R U R' U R U2 R' U R U' R' U2
(1,10)(2,5)(4,9)(6,8)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,10)(2,5,7,4,9)(6,8)  => U R U' R' U R U R' U' R U2 R' U' R U' R' U'
(1,10)(2,5,4)(6,8)      => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(2,5,9,7,4)(6,8)  => U R U R' U R U R' U2
(1,10)(2,5,7,9,4)(6,8)  => U2 R U R' U2 U R' U2 R U R' U R
(1,10)(2,5,4,7,9)(6,8)  => U2 R U R' U2 R U R' U R U2 R' U
(1,10)(2,5,9,4,7)(6,8)  => U R U R' U R U' R' U' R U' R' U R U R' U R U2 R' U
(1,10)(2,5)(4,7)(6,8)   => U R' U2 R U R' U R U2 R U' R' U' R U2 R' U'
(1,10)(2,5)(6,8)(7,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2
(1,10)(2,5,7)(6,8)      => U R U' R' U' R U2 R' U'
(1,10)(2,5,9)(6,8)      => U' R U2 R' U' R U' R' U' R U R' U R U R' U' U' R U' R' U' R U' R'
(1,10,3,8)(2,5,9,7)     => R U R' U R U R' U' R U' R'
(1,10,3,8)(2,5)         => U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,5,7,9)     => U2 R U R' U2
(1,10,3,8)(2,5,7,4)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(2,5,4)(7,9)  => U R U R' U R U' U' R' U' R U' R' U' R U' R'
(1,10,3,8)(2,5,9,4)     => U R U R' U R U R' U R U2 R' U' R U' R'
(1,10,3,8)(2,5,7)(4,9)  => U' R U' R' U'
(1,10,3,8)(2,5,4,9)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U2 R'
(1,10,3,8)(2,5)(4,9,7)  => U R U' R' U R U R' U U R U R' U R U2 R' U
(1,10,3,8)(2,5,9)(4,7)  => U R U R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,10,3,8)(2,5,4,7)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U' R' U' R U2 R'
(1,10,3,8)(2,5)(4,7,9)  => U R' U2 R U R' U R2 U' R' U'
(1,10,6,3)(4,9)         => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(4,9,5,7)     => R U R' U R U2 R' U R U' R' U
(1,10,6,3)(4,9,7,5)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U R'
(1,10,6,3)(4,7)         => U R U R' U R U2 R' U2 R U' R' U2 R U' R'
(1,10,6,3)(4,7,9,5)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U
(1,10,6,3)(4,7,5,9)     => U R U R' U R U R' R' U' R U' R' U2 R U'
(1,10,6,3)(7,9)         => U R U R' U R U2 R' U' R U R'
(1,10,6,3)(5,9)         => U R U R' U R U R' U
(1,10,6,3)(5,7)         => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R'
(1,10,6,3)(4,5)         => U R U2 R' U R U' R' U' R U' R'
(1,10,6,3)(4,5,7,9)     => U2 R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,6,3)(4,5,9,7)     => R U R' U R U' R'
(1,10)(4,9,7)(6,8)      => U' R U' R' U2
(1,10)(4,9)(5,7)(6,8)   => U' R U2 R' U' R U' R' U' R U' R' U' R U' U2 R' U'
(1,10)(4,9,5)(6,8)      => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10)(4,7,5)(6,8)      => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U'
(1,10)(4,7)(5,9)(6,8)   => R U R' U R U R' U' R U' R' U'
(1,10)(4,7,9)(6,8)      => U2 R U R' U
(1,10)(6,8)             => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(5,9,7)(6,8)      => U R U R' U R U R' U R U2 R' U' R U' R' U'
(1,10)(5,7,9)(6,8)      => U R U R' U R U' U' R' U' R U' R' U' R U' R' U'
(1,10)(4,5)(6,8)(7,9)   => U R' U2 R U R' U R2 U' R' U2
(1,10)(4,5,7)(6,8)      => U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10)(4,5,9)(6,8)      => U R U R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,8,3,6)(4,9,5)     => U' R U2 R' U' R U' R' U' R U R' U R U' R' U'
(1,10,8,3,6)(4,9)(5,7)  => U R U' R' U R U' R' U' R U' R'
(1,10,8,3,6)(4,9,7)     => R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(4,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U' R' U' U' R U' R' U'
(1,10,8,3,6)(4,7,9)     => U2 R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,8,3,6)(4,7)(5,9)  => U R U R' U R U R' U R U R' U R U2 R' U
(1,10,8,3,6)(4,5)(7,9)  => U2 R U R' U R' U2 R U R' U R
(1,10,8,3,6)(4,5,9)     => U R U R' U R U R' U2 R' U U R U R' U R U R U R' U R U2 R' U
(1,10,8,3,6)(4,5,7)     => U R U2 R' U R U R' U
(1,10,8,3,6)(5,7,9)     => U' R U2 R' U' R U' R' U R U R' U'
(1,10,8,3,6)            => U' R U2 R' U' R U2 R' U2 R U' R' U'
(1,10,8,3,6)(5,9,7)     => U R U R' U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,3,8)(4,7)         => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(4,7,9,5)     => U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,3,8)(4,7,5,9)     => U R U R' U R U R' U R' U2 R U R' U R
(1,10,3,8)(5,9)         => U R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R' U'
(1,10,3,8)(5,7)         => U' R U2 R' U' R U2 R' U' R U2 R'
(1,10,3,8)(7,9)         => U' U' R U' R' U' R U' R'
(1,10,3,8)(4,9)         => R' U' R U' R' U2 R U' U2 R U' R' U'
(1,10,3,8)(4,9,5,7)     => U R U' R' U R U R2 U' R U' R' U2 R U'
(1,10,3,8)(4,9,7,5)     => U R U' R' U R U R' U
(1,10,3,8)(4,5,9,7)     => U R' U2 R U R' U R U' R U' R' U' R U' R'
(1,10,3,8)(4,5)         => U R U U R' U R U R' U R U R' U R U2 R' U
(1,10,3,8)(4,5,7,9)     => U2 R U R' U R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,9,5,7,4) => R' U' R U' R' U2 R2 U R' U'
(1,10,8,3,6)(2,9,4)     => R U R' U R U R' U U R U R'
(1,10,8,3,6)(2,9,7,5,4) => R U R' U R U R' U U R U R' U' R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,9)(5,7)  => U' R U2 R' U' R U' R' U2 R U' R'
(1,10,8,3,6)(2,9,7)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,9,5)     => U R U R' U R U2 R' U R U R' U R U' R' U'
(1,10,8,3,6)(2,9,4,5,7) => R U R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,10,8,3,6)(2,9)(4,5)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,9,7,4,5) => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U R'
(1,10,8,3,6)(2,9,5,4,7) => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U R' U'
(1,10,8,3,6)(2,9)(4,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R'
(1,10,8,3,6)(2,9,4,7,5) => R U R' U R U R' U U R U R' U U R U2 R' U' R U' R'
(1,10)(2,9,7,5,4)(6,8)  => R U R' U R U R' U2 R U R' R' U2 R U R' U R
(1,10)(2,9,5,7,4)(6,8)  => U R U R' U R U2 R' U R U R' U R U R' U' R U' R' U'
(1,10)(2,9,4)(6,8)      => R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,10)(2,9,5,4,7)(6,8)  => R U R' U R U R' U U R U R' U U
(1,10)(2,9,4,7,5)(6,8)  => U R U R' U R U2 R' U R U' R' U' R U R' U'
(1,10)(2,9)(4,7)(6,8)   => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,9)(4,5)(6,8)   => R U R' U R U R' U' U' R U' R' U' R U' R'
(1,10)(2,9,7,4,5)(6,8)  => U' R U2 R' U' R U' R' U' U' R U' R' U' U'
(1,10)(2,9,4,5,7)(6,8)  => R U R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(1,10)(2,9,7)(6,8)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2
(1,10)(2,9)(5,7)(6,8)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,9,5)(6,8)      => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10,3,8)(2,9,7,4)     => R U R' U R U R' U U R U2 R' U R U2 R' U
(1,10,3,8)(2,9,4)(5,7)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U'
(1,10,3,8)(2,9,5,4)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U R' U'
(1,10,3,8)(2,9,5,7)     => R U R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,10,3,8)(2,9)         => U R U R' U R U2 R' U R U' R' U' R U R'
(1,10,3,8)(2,9,7,5)     => R U R' U R U R' U U R U R' U'
(1,10,3,8)(2,9)(4,7,5)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U R'
(1,10,3,8)(2,9,4,7)     => U' R U2 R' U' R U' R' U' U' R U' R' U'
(1,10,3,8)(2,9,5)(4,7)  => R U R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,10,3,8)(2,9)(4,5,7)  => R U R' U R U2 R' U2 R U' R' U' R U R'
(1,10,3,8)(2,9,7)(4,5)  => U R U R' U R U2 R' U R U R' U R U R' U' R U' R'
(1,10,3,8)(2,9,4,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R' U'
(1,10,6,3)(2,9,7,5)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U R'
(1,10,6,3)(2,9)         => R U R' U R U R' U U R U R2 U' R U' R' U2 R U'
(1,10,6,3)(2,9,5,7)     => R U R' U R U R' U U R U R' U U R U R' U R U2 R' U
(1,10,6,3)(2,9)(4,5,7)  => R U R' U R U R' U U R U R' U
(1,10,6,3)(2,9,7)(4,5)  => R' U' R U' R' U2 R2 U R'
(1,10,6,3)(2,9,4,5)     => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,9,4)(5,7)  => R U R' U R U R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,9,5,4)     => U' R U2 R' U' R U' R' U' U' R U' R' U' U2
(1,10,6,3)(2,9,7,4)     => U R U R' U R U2 R' U R U R' U R U' R'
(1,10,6,3)(2,9,5)(4,7)  => R U R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(1,10,6,3)(2,9)(4,7,5)  => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U' R U' R'
(1,10,6,3)(2,9,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R' U'

文章同时发表于:利用数论来研究魔方 - 大海Online的博客 

这篇关于利用群论来研究魔方的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198213

相关文章

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

生信圆桌x生信分析平台:助力生物信息学研究的综合工具

介绍 少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 生物信息学的迅速发展催生了众多生信分析平台,这些平台通过集成各种生物信息学工具和算法,极大地简化了数据处理和分析流程,使研究人员能够更高效地从海量生物数据中提取有价值的信息。这些平台通常具备友好的用户界面和强大的计算能力,支持不同类型的生物数据分析,如基因组、转录组、蛋白质组等。

开题报告中的研究方法设计:AI能帮你做什么?

AIPaperGPT,论文写作神器~ https://www.aipapergpt.com/ 大家都准备开题报告了吗?研究方法部分是不是已经让你头疼到抓狂? 别急,这可是大多数人都会遇到的难题!尤其是研究方法设计这一块,选定性还是定量,怎么搞才能符合老师的要求? 每次到这儿,头脑一片空白。 好消息是,现在AI工具火得一塌糊涂,比如ChatGPT,居然能帮你在研究方法这块儿上出点主意。是不

研究人员在RSA大会上演示利用恶意JPEG图片入侵企业内网

安全研究人员Marcus Murray在正在旧金山举行的RSA大会上公布了一种利用恶意JPEG图片入侵企业网络内部Windows服务器的新方法。  攻击流程及漏洞分析 最近,安全专家兼渗透测试员Marcus Murray发现了一种利用恶意JPEG图片来攻击Windows服务器的新方法,利用该方法还可以在目标网络中进行特权提升。几天前,在旧金山举行的RSA大会上,该Marcus现场展示了攻击流程,

Science Robotics 首尔国立大学研究团队推出BBEX外骨骼,实现多维力量支持!

重复性举起物体可能会对脊柱和背部肌肉造成损伤,由此引发的腰椎损伤是工业环境等工作场所中一个普遍且令人关注的问题。为了减轻这类伤害,有研究人员已经研发出在举起任务中为工人提供辅助的背部支撑装置。然而,现有的这类装置通常无法在非对称性的举重过程中提供多维度的力量支持。此外,针对整个人体脊柱的设备安全性验证也一直是一个缺失的环节。 据探索前沿科技边界,传递前沿科技成果的X-robot投稿,来自首尔国立

代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯

52. 携带研究材料 这是一个完全背包问题,就是每个物品可以无限放。 在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。 所以这里能多次放物体只需要把遍历顺序改改就好了 # include<iostream># include<vector>using namespace std;int main(){int n,m;cin>>n>>m;std::vector<i

vue原理分析(六)--研究new Vue()

今天我们来分析使用new Vue() 之前研究时,只是说是在创建一个实例。并没有深入进行研究 在vue的源码中找下Vue的构造函数 function Vue(options) {if (!(this instanceof Vue)) {warn$2('Vue is a constructor and should be called with the `new` keyword');}thi

《中国全屋智能行业发展现状与投资前景研究分析报告》

报告导读:本报告从国际全屋智能发展、国内全屋智能政策环境及发展、研发动态、供需情况、重点生产企业、存在的问题及对策等多方面多角度阐述了全屋智能市场的发展,并在此基础上对全屋智能的发展前景做出了科学的预测,最后对全屋智能投资潜力进行了分析。  订购链接:https://www.yxresearch.com/ 第一章全屋智能行业概念界定及发展环境剖析 第一节全屋智能行业相关概念界定 一、智能家

中国生态环境胁迫数据(栅格/县域尺度)-为研究生态环境压力提供数据支撑

中国生态环境胁迫矢量数据(2000-2010年) 数据介绍 2000-2010年中国生态环境胁迫数据为2000-2010年中国范围内人口、农业生产等生态环境胁迫因子的空间分布图,包括人口密度、农药使用强度、化肥施用强度。数据可用于分析全国生态环境胁迫因子及其对生态环境造成的压力的空间特征,主要通过社会经济统计资料获得,为县域尺度空间数据。 存储容量31.01 GB文件数量6数据类型栅

研究纹理采样器在像素级别的采样位置

问题 【纹理采样器】是一个基础的概念。假设有一个正方形面片,顶点的UV范围是0.0~1.0,那么在这个正方形面片上采样一张纹理时,会呈现出完整的纹理。 但我现在关注的问题是,在像素级别上,采样的位置是怎样的。具体来讲:对于UV值是(0.0,0.0)的点,它对应的采样位置是纹理最左上角像素的中心?还是纹理最左上角像素的左上角?即,下面左右哪个是正确的情况? 在宏观上,尤其是像素较多的时候,二者