Opencv中的形态字梯度,顶帽,黑帽(python实现)

2023-10-12 17:40

本文主要是介绍Opencv中的形态字梯度,顶帽,黑帽(python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.了解腐蚀和膨胀
    • 2.了解开运算和闭运算
    • 3.形态字梯度
      • (1)形态字梯度=原图-腐蚀
      • (2)函数讲解
      • (3)代码实战
    • 4.顶帽
      • (1)顶帽=原图-开运算
      • (2)函数讲解
    • 6.黑帽
      • (1)黑帽=原图-闭运算
      • (2)函数讲解
    • 7.总结

1.了解腐蚀和膨胀

https://mydreamambitious.blog.csdn.net/article/details/125265431


2.了解开运算和闭运算

https://mydreamambitious.blog.csdn.net/article/details/125298061


3.形态字梯度

(1)形态字梯度=原图-腐蚀

(2)函数讲解

morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None):

Src:输入的原始图像
Op:进行操作(开运算,闭运算,顶帽,黑帽,形态字梯度)
Kernel:卷积核的大小
Dst:输出的图像
Anchor:默认值为(-1,-1),卷积的中心
Iterations:迭代的次数
borderType:用于推断图像外部像素的某种边界模式。注意它有默认值 BORDER_DEFAULT
borderValue:边界值(如果是常量边界)。默认morphologyDefaultBorderValue具有特殊含义。对于侵蚀,它被转换为+\inf;对于膨胀,它被转换为-\inf,这意味着只有在图像内部的像素上才能有效地计算最小值(最大值)

(3)代码实战

import os
import cv2
import numpy as npdef MorphologyGradient(img_path='images/Exen.png'):#读取图片img_src=cv2.imread(img_path)#缩放图片的大小img=cv2.resize(src=img_src,dsize=(500,500))#获取卷积核kernel=cv2.getStructuringElement(shape=cv2.MORPH_RECT,ksize=(5,5))#进行顶帽运算img=cv2.morphologyEx(src=img,op=cv2.MORPH_GRADIENT,kernel=kernel,iterations=1)#显示图片cv2.imshow('img_src',img_src)cv2.imshow('img',img)#等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()def MorphologyGradient_2(img_path='images/Exen.png'):# 读取图片img_src = cv2.imread(img_path)# 缩放图片的大小img = cv2.resize(src=img_src, dsize=(500, 500))# 获取卷积核kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(5, 5))# 进行顶帽运算img_erode=cv2.erode(src=img,kernel=kernel,iterations=1)#将原图和img_open缩放到同样大小img_src=cv2.resize(src=img_src,dsize=(500,500))img=img_src-img_erode# 显示图片cv2.imshow('img_src', img_src)cv2.imshow('img', img)# 等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':print('pycharm')# MorphologyGradient()MorphologyGradient_2()

直接使用函数:
在这里插入图片描述
采用:原图-腐蚀
在这里插入图片描述


4.顶帽

(1)顶帽=原图-开运算

得到图形外的小图形

(2)函数讲解

morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None):

Src:输入的原始图像
Op:进行操作(开运算,闭运算,顶帽,黑帽)
Kernel:卷积核的大小
Dst:输出的图像
Anchor:默认值为(-1,-1),卷积的中心
Iterations:迭代的次数
borderType:用于推断图像外部像素的某种边界模式。注意它有默认值 BORDER_DEFAULT
borderValue:边界值(如果是常量边界)。默认morphologyDefaultBorderValue具有特殊含义。对于侵蚀,它被转换为+\inf;对于膨胀,它被转换为-\inf,这意味着只有在图像内部的像素上才能有效地计算最小值(最大值)

代码实战:

import os
import cv2
import numpy as npdef MorphologyTopPath(img_path='images/Exen_white.png'):#读取图片img_src=cv2.imread(img_path)#缩放图片的大小img=cv2.resize(src=img_src,dsize=(500,500))#获取卷积核kernel=cv2.getStructuringElement(shape=cv2.MORPH_RECT,ksize=(5,5))#进行顶帽运算img=cv2.morphologyEx(src=img,op=cv2.MORPH_TOPHAT,kernel=kernel,iterations=1)#显示图片cv2.imshow('img_src',img_src)cv2.imshow('img',img)#等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()def MorphologyTopPath_2(img_path='images/Exen_white.png'):# 读取图片img_src = cv2.imread(img_path)# 缩放图片的大小img = cv2.resize(src=img_src, dsize=(500, 500))# 获取卷积核kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(5, 5))# 进行顶帽运算img_open = cv2.morphologyEx(src=img, op=cv2.MORPH_OPEN, kernel=kernel, iterations=1)#将原图和img_open缩放到同样大小img_src=cv2.resize(src=img_src,dsize=(500,500))img=img_src-img_open# 显示图片cv2.imshow('img_src', img_src)cv2.imshow('img', img)# 等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':print('pycharm')# MorphologyTopPath()MorphologyTopPath_2()

直接使用函数:
在这里插入图片描述

采用:原图-开运算;
在这里插入图片描述


6.黑帽

(1)黑帽=原图-闭运算

得到大图形内的小图形;

(2)函数讲解

morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None):

Src:输入的原始图像
Op:进行操作(开运算,闭运算,顶帽,黑帽)
Kernel:卷积核的大小
Dst:输出的图像
Anchor:默认值为(-1,-1),卷积的中心
Iterations:迭代的次数
borderType:用于推断图像外部像素的某种边界模式。注意它有默认值 BORDER_DEFAULT
borderValue:边界值(如果是常量边界)。默认morphologyDefaultBorderValue具有特殊含义。对于侵蚀,它被转换为+\inf;对于膨胀,它被转换为-\inf,这意味着只有在图像内部的像素上才能有效地计算最小值(最大值)

代码实战:

import os
import cv2
import numpy as npdef MorphologyBlackHAT(img_path='images/Exen_black.png'):#读取图片img_src=cv2.imread(img_path)#缩放图片的大小img=cv2.resize(src=img_src,dsize=(500,500))#获取卷积核kernel=cv2.getStructuringElement(shape=cv2.MORPH_RECT,ksize=(5,5))#进行顶帽运算img=cv2.morphologyEx(src=img,op=cv2.MORPH_BLACKHAT,kernel=kernel,iterations=1)#显示图片cv2.imshow('img_src',img_src)cv2.imshow('img',img)#等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()def MorphologyBlackHAT_2(img_path='images/Exen_black.png'):# 读取图片img_src = cv2.imread(img_path)# 缩放图片的大小img = cv2.resize(src=img_src, dsize=(500, 500))# 获取卷积核kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(7,7))# 进行顶帽运算img_close = cv2.morphologyEx(src=img, op=cv2.MORPH_CLOSE, kernel=kernel, iterations=1)#将原图和img_open缩放到同样大小img_src=cv2.resize(src=img_src,dsize=(500,500))img=img_src-img_close# 显示图片cv2.imshow('img_src', img_src)cv2.imshow('img', img)# 等待鼠标和键盘值cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':print('pycharm')# MorphologyBlackHAT()MorphologyBlackHAT_2()

直接使用函数:

在这里插入图片描述


7.总结

(1)开运算:腐蚀+膨胀;去除大图像外的小图像;
(2)闭运算:膨胀+腐蚀;去除大图像内的小图像;
(3)梯度:原图-腐蚀;求图形的边缘;
(4)顶帽:原图-开运算;得到大图形外的小图形;
(5)黑帽:原图-闭运算;得到图形内的小图形;

这篇关于Opencv中的形态字梯度,顶帽,黑帽(python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/197405

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos