Fooocus框架代码分析

2023-10-12 17:30
文章标签 分析 代码 框架 fooocus

本文主要是介绍Fooocus框架代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于Fooocus的优秀推理能力,后续考虑从webui切换到Fooocus上,因此对其中的代码要进行深入分析,Fooocus的sdxl版本在11g的显存上跑起来压力不大,但是webui的sdxl版本起码12g。尤其要对比其和webui的优化点,但是在代码层面,并不是和webui同一档次的框架,webui采用了支持hook式的插件系统,但是fooocus因为其midjourney的指向,所以并不是走三方插件的路子。

在autodl上:python launch.py --listen --port 6006

entry_with_update.py

# 启动
python entry_with_update.py --listenlaunch.py ->
prepare_environment()->
ini_comfy_args()->
- args_manager.py -> args = comfy_cli.args ->backend/headless/comfy/cli_args.py
download_models()->webui.py ->
- run_button.click().then(fn=generate_clicked)->
-- modules/async_worker.py->workers()->threading.Thread(target=worker).start()
-- handler()-> # 传入参数并配置
-- prompt_processing/vary/upscale/inpaint/controlnet/
-- imgs = pipeline.process_diffusin(...)-> 

modules/default_pipeline.py -> process_diffusion() 主pipeline,webui中是StableDiffusionProcessingTxt2Img和StableDiffusionProcessingImg2Img两个核心接口。

if latent is None:empty_latent = core.generate_empty_latent(width,height,1)
else:empty_latent = latentsampled_latent = core.ksampler(final_unet,final_refiner,positive_cond,negative_cond,empty_latent,steps,denoise,callback,cfg_scale,sampler_name,scheduler_name,switch)    
decoded_latent = core.decode_vae(vae,sampled_latent,...)
images = core.pytorch_to_numpy(decoded_latent)  

默认方法:refresh_everything()

refresh_everything()->refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
refresh_loras(loras)prepare_text_encoder(True)

core.py -> generate_empty_latent()

opEmptyLatentImage.generate(width,height,batch_size)[0]- backend/headless/nodes.py -> EmptyLatentImage.generate()
- latent = torch.zeros([bs,4,height//8,width//8]) -> {'samples':latent}

core.py->ksampler()->backend/headless/comfy/sample.py

core->ksampler()latent_image = latent['sampler']
noise = comfy.sample.prepare_noise(latent_image,seed,...)samples = comfy.sample.sample(model,noise,steps,cfg,sampler_name,scheduler,positive,negative,latent_image,...)
- backend/headless/comfy/sample.py->sample()
- real_model,positive_copy,negative_copy,noise_mask,models=prepare_sampling(model,noise.shape,positive...)
- sampler = comfy.samplers.KSampler(...)
- sampler = sampler.sample(noise,positive_copy,negative_copy,cfg,latent_image...)
-- sampler = sampler_class(self.sampler)
-- sample(self.model,noise,positive,...)

sampler_class()->backend/headless/comfy/samplers.py

sampler_class(name)->
sampler = ksampler(name)->class KSAMPLER(Sampler)

sample->modules/sample_hijack.py (backend/headless/comfy/samplers.py) 劫持了comfy中的sample

sample_hijack(model,noise,positive,negative,cfg,device,sampler,sigmas,model_options,latent_image,denoise_mask,callback,...) ->positive = positive[:]
negative = negative[:]model_wrap = model_wrap(model)
- model_denoise = CFGNoisePredictor(model)
- model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise)calculate_start_end_timesteps(model_wrap,negative)
calculate_start_end_timesteps(model_wrap,positive)
for c in positive/negative:create_cond_with_same_area_if_none(negative/positive,c)
pre_run_control(model_wrap,negative+positive) # cfg相关latent_image = model.process_latent_in(latent_image)samples = samplers.sample(model_wrap,sigmas,extra_args,...)
model.process_latent_out(samples)

backend/headless/comfy/samplers.py

class KSAMPLER->sample(model_wrap,sigmas,extra_args,callback,...)
model_k = KSamplerOInpaint(model_wrap)if sampler_name == "dpm_fast":samples = k_diffusion_sampling.sample_dpm_fast(model_k,noise,...)
elif sampler_name == "dpm_adaptive":samples = k_diffusion_sampling.sample_dpm_adaptive(model_k,noise,...)
else:samples = getattr(k_diffusion_sampling,"sample_{}".format(sampler_name))(model_k,noise,...)

backend/headless/comfy/k_diffusion/sampling.py

sampler_dpmpp_2m_sde_gpu(model,x,sigmas,extra_args,callback,...)
noise_sampler = BrownianTreeNoiseSampler(x,sigma_min,..) if noise_sampler is None else noise_sampler
sample_dpmpp_2m_sde(model,x,...)

sample_dpmpp_2m_sde

for i in trange(len(sigmas)-1):denoised = model(x,sigmas[i]*s_in,**extra_args)if callback is not None:callback({'x':x,'i':i,'sigma':sigma[i],'sigma_hat':sigmas[i],'denoised':denoised})if sigmas[i+1] == 0:x = denoisedelse:# DPM-Solver++(2M) SDEt, s = -sigmas[i].log(), -sigmas[i + 1].log()h = s - teta_h = eta * hx = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoisedif old_denoised is not None:r = h_last / hif solver_type == 'heun':x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)elif solver_type == 'midpoint':x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)if eta:x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise

backend/headless/nodes.py 节点就是类

NODE_CLASS_MAPPINGS = {"KSampler": KSampler,"CheckpointLoaderSimple": CheckpointLoaderSimple,"CLIPTextEncode": CLIPTextEncode,"CLIPSetLastLayer": CLIPSetLastLayer,"VAEDecode": VAEDecode,"VAEEncode": VAEEncode,"VAEEncodeForInpaint": VAEEncodeForInpaint,"VAELoader": VAELoader,"EmptyLatentImage": EmptyLatentImage,"LatentUpscale": LatentUpscale,"LatentUpscaleBy": LatentUpscaleBy,"LatentFromBatch": LatentFromBatch,"RepeatLatentBatch": RepeatLatentBatch,"SaveImage": SaveImage,"PreviewImage": PreviewImage,"LoadImage": LoadImage,"LoadImageMask": LoadImageMask,"ImageScale": ImageScale,"ImageScaleBy": ImageScaleBy,"ImageInvert": ImageInvert,"ImageBatch": ImageBatch,"ImagePadForOutpaint": ImagePadForOutpaint,"EmptyImage": EmptyImage,"ConditioningAverage": ConditioningAverage,"ConditioningCombine": ConditioningCombine,"ConditioningConcat": ConditioningConcat,"ConditioningSetArea": ConditioningSetArea,"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,"ConditioningSetMask": ConditioningSetMask,"KSamplerAdvanced": KSamplerAdvanced,"SetLatentNoiseMask": SetLatentNoiseMask,"LatentComposite": LatentComposite,"LatentBlend": LatentBlend,"LatentRotate": LatentRotate,"LatentFlip": LatentFlip,"LatentCrop": LatentCrop,"LoraLoader": LoraLoader,"CLIPLoader": CLIPLoader,"UNETLoader": UNETLoader,"DualCLIPLoader": DualCLIPLoader,"CLIPVisionEncode": CLIPVisionEncode,"StyleModelApply": StyleModelApply,"unCLIPConditioning": unCLIPConditioning,"ControlNetApply": ControlNetApply,"ControlNetApplyAdvanced": ControlNetApplyAdvanced,"ControlNetLoader": ControlNetLoader,"DiffControlNetLoader": DiffControlNetLoader,"StyleModelLoader": StyleModelLoader,"CLIPVisionLoader": CLIPVisionLoader,"VAEDecodeTiled": VAEDecodeTiled,"VAEEncodeTiled": VAEEncodeTiled,"unCLIPCheckpointLoader": unCLIPCheckpointLoader,"GLIGENLoader": GLIGENLoader,"GLIGENTextBoxApply": GLIGENTextBoxApply,"CheckpointLoader": CheckpointLoader,"DiffusersLoader": DiffusersLoader,"LoadLatent": LoadLatent,"SaveLatent": SaveLatent,"ConditioningZeroOut": ConditioningZeroOut,"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
}

这篇关于Fooocus框架代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/197348

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

Gin框架中的GET和POST表单处理的实现

《Gin框架中的GET和POST表单处理的实现》Gin框架提供了简单而强大的机制来处理GET和POST表单提交的数据,通过c.Query、c.PostForm、c.Bind和c.Request.For... 目录一、GET表单处理二、POST表单处理1. 使用c.PostForm获取表单字段:2. 绑定到结

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在