关于单核/多核死机问题

2023-10-12 16:50
文章标签 问题 死机 单核 多核

本文主要是介绍关于单核/多核死机问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下信息来自https://www.cnblogs.com/jerry116/p/8799355.html。另外还未看代码进行验证

https://www.cnblogs.com/sky-heaven/p/16616530.html

linux-3.16 

1、对于非抢占内核。如果代码中出现死锁(未屏蔽软中断、本cpu中断)或者死循环。那么出现死锁的这个cpu将一直卡住,无法进行任务调度。

对于这种情况需要一种检测机制去发现这种问题。具体就是每个核有一个喂狗线程(优先级最高?)和一个喂狗软中断(定时器??)。喂狗线程负责不断更新时间戳。喂狗软中断负责检测时间戳是否更新。

即使出现了cpu无法调度的情况(不考虑中断被屏蔽)。由于软中断能够打断线程或者进程的运行。当喂狗软中断触发时,先去检查上一次喂狗线程的时间。如果当前时间距离上一次喂狗的时间超过了一定的阈值。则认为未进行任务调度,打印调用栈信息(由于任务切换不了,那么软中断打断的一定是死锁的地方)。如果时间戳未超,说明喂狗线程还能被调度,cpu还能进行任务切换

编译内核的时候需要加上这些配置

static struct smp_hotplug_thread watchdog_threads = {.store			= &softlockup_watchdog,.thread_should_run	= watchdog_should_run,.thread_fn		= watchdog,.thread_comm		= "watchdog/%u",.setup			= watchdog_enable,.cleanup		= watchdog_cleanup,.park			= watchdog_disable,.unpark			= watchdog_enable,
};

喂狗线程 

lockup_detector_init会为每个cpu创建一个watchdog内核线程

void __init lockup_detector_init(void)
{set_sample_period();if (watchdog_user_enabled)watchdog_enable_all_cpus(false);
}
static int watchdog_enable_all_cpus(bool sample_period_changed)
{
.................err = smpboot_register_percpu_thread(&watchdog_threads);
........................return err;
}

 __smpboot_create_thread->smpboot_thread_fn。

static int smpboot_thread_fn(void *data)
{
.......................................set_current_state(TASK_RUNNING);preempt_enable();ht->thread_fn(td->cpu);
...............................
}

 其中ht->thread_fn就对应了回调函数watchdog。可以看到喂狗线程的回调函数更新了一下时间戳(__touch_watchdog)。

那喂狗线程何时被调度呢?下面进行解析

static void watchdog(unsigned int cpu)
{__this_cpu_write(soft_lockup_hrtimer_cnt,__this_cpu_read(hrtimer_interrupts));__touch_watchdog();
}
static void __touch_watchdog(void)
{__this_cpu_write(watchdog_touch_ts, get_timestamp());
}

 喂狗软中断(其实就是高精度定时器),检测cpu是否无法调度

linux3.16 watchdog_enable是在这个地方进行注册的

watchdog_enable在smpboot_thread_fn第一次执行时得到执行,随后其状态设为HP_THREAD_ACTIVE。

static void watchdog_enable(unsigned int cpu)
{struct hrtimer *hrtimer = &__raw_get_cpu_var(watchdog_hrtimer);/* kick off the timer for the hardlockup detector */hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);hrtimer->function = watchdog_timer_fn;//高精度定时器回调函数/* Enable the perf event */watchdog_nmi_enable(cpu);/* 启动一个定时器 *//* done here because hrtimer_start can only pin to smp_processor_id() */hrtimer_start(hrtimer, ns_to_ktime(sample_period),HRTIMER_MODE_REL_PINNED);/* initialize timestamp */watchdog_set_prio(SCHED_FIFO, MAX_RT_PRIO - 1);__touch_watchdog();
}

高精度定时器,看网上说都是在中断上下文中执行的(中断上半部以及软中断中)

linux 内核 高精度定时器(hrtimer)实现机制_hrtimer_start_老王不让用的博客-CSDN博客

  • HRTIMER_MODE_SOFT:表示该定时器是否是“软”的,也就是定时器到期回调函数是在软中断(HRTIMER_SOFTIRQ,高精度定时器)下被执行的。
  • HRTIMER_MODE_HARD:表示该定时器是否是“硬”的,也就是定时器到期回调函数是
  • 在中断处理程序中被执行的。看打印好像确实是这样的 看打印好像确实是这样的
  • static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
    {
    .........................printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, cpu id %d\n", in_interrupt(), in_softirq(), smp_processor_id());
    ........................return HRTIMER_RESTART;
    }
    

从函数watchdog_enable里面可以看到高精度定时器的回调函数是watchdog_timer_fn

1、可以看到喂狗线程就是在高精度定时器里面被唤醒的。

        wake_up_process(__this_cpu_read(softlockup_watchdog));

2、定时器的下一次触发时间也是在这里更新

        hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));

3、检测是否发生soft lockup也是在这个里面is_softlockup

/* 高精度定时器的回调是在中断上下文执行的 */
/* watchdog kicker functions */
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{unsigned long touch_ts = __this_cpu_read(watchdog_touch_ts);struct pt_regs *regs = get_irq_regs();int duration;int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace;/* kick the hardlockup detector */watchdog_interrupt_count();//增加计数,这个应该是hard lockup使用/* 唤醒喂狗线程 *//* kick the softlockup detector */wake_up_process(__this_cpu_read(softlockup_watchdog));/* 增加高精度定时器的超时时间,并重启定时器 *//* .. and repeat */hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));if (touch_ts == 0) {//为什么时间戳会是0呢?难道是第一次执行??if (unlikely(__this_cpu_read(softlockup_touch_sync))) {/** If the time stamp was touched atomically* make sure the scheduler tick is up to date.*/__this_cpu_write(softlockup_touch_sync, false);sched_clock_tick();}/* Clear the guest paused flag on watchdog reset */kvm_check_and_clear_guest_paused();__touch_watchdog();return HRTIMER_RESTART;}/* 现在时间到上次时间戳的位置已经超了 */duration = is_softlockup(touch_ts);if (unlikely(duration)) {//非0说明已经触发检测机制,cpu在规定时间内未进行调度if (kvm_check_and_clear_guest_paused())return HRTIMER_RESTART;/* only warn once */if (__this_cpu_read(soft_watchdog_warn) == true)return HRTIMER_RESTART;if (softlockup_all_cpu_backtrace) {if (test_and_set_bit(0, &soft_lockup_nmi_warn)) {/* Someone else will report us. Let's give up */__this_cpu_write(soft_watchdog_warn, true);return HRTIMER_RESTART;}}printk(KERN_EMERG "BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",smp_processor_id(), duration,current->comm, task_pid_nr(current));print_modules();print_irqtrace_events(current);if (regs)show_regs(regs);elsedump_stack();if (softlockup_all_cpu_backtrace) {trigger_allbutself_cpu_backtrace();clear_bit(0, &soft_lockup_nmi_warn);/* Barrier to sync with other cpus */smp_mb__after_atomic();}if (softlockup_panic)panic("softlockup: hung tasks");__this_cpu_write(soft_watchdog_warn, true);} else__this_cpu_write(soft_watchdog_warn, false);return HRTIMER_RESTART;
}static int is_softlockup(unsigned long touch_ts)
{unsigned long now = get_timestamp();/* 当前时间已经超过上一次的时间戳 +  检测阈值   *//* Warn about unreasonable delays: */if (time_after(now, touch_ts + get_softlockup_thresh()))return now - touch_ts;return 0;
}

 可以看到基于软件实现的喂狗原理大致如下:

        首先存在一个喂狗线程,和一个喂狗软中断(其实就是高精度定时器)。其中喂狗线程被调度的时候就更新时间戳watchdog_touch_ts(per cpu变量,每个cpu都有一个)。喂狗定时器里面负责唤醒喂狗线程去更新时间戳,并且检查当前时间和时间戳的差值。如果差值超过一定的阈值,则认为触发soft lockup.

代码示例:非抢占内核

从调用栈也能看到是test_thread里面出了问题

创建了一个内核线程进行死循环

static struct task_struct *test_task;
int test_thread(void* a)
{unsigned long flags;printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, cpu id %d\n", in_interrupt(), in_softirq(), smp_processor_id());while (1){}return 0;
}
 softlockup simulate, in_interrupt 0 in_softirq 0, cpu id 3
BUG: soft lockup - CPU#3 stuck for 23s! [test_task:586]
Modules linked in:CPU: 3 PID: 586 Comm: test_task Not tainted 3.16.0 #41
task: ee01c800 ti: ee206000 task.ti: ee206000
PC is at test_thread+0x30/0x38
LR is at test_thread+0x30/0x38
pc : [<c0305d58>]    lr : [<c0305d58>]    psr: 60000013
sp : ee207f60  ip : 00000001  fp : 00000000
r10: 00000000  r9 : 00000000  r8 : 00000000
r7 : c0305d28  r6 : 00000000  r5 : 00000000  r4 : ee1fd400
r3 : 000004f0  r2 : c089f494  r1 : 20000093  r0 : 0000003d
Flags: nZCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment kernel
Control: 10c53c7d  Table: 8e2f806a  DAC: 00000015
CPU: 3 PID: 586 Comm: test_task Not tainted 3.16.0 #41
[<c00142d0>] (unwind_backtrace) from [<c0010f64>] (show_stack+0x10/0x14)
[<c0010f64>] (show_stack) from [<c045cb60>] (dump_stack+0x74/0x90)
[<c045cb60>] (dump_stack) from [<c0087e08>] (watchdog_timer_fn+0x158/0x1bc)
[<c0087e08>] (watchdog_timer_fn) from [<c003f1d0>] (hrtimer_run_queues+0xcc/0x23c)
[<c003f1d0>] (hrtimer_run_queues) from [<c002c244>] (run_local_timers+0x8/0x14)
[<c002c244>] (run_local_timers) from [<c002c27c>] (update_process_times+0x2c/0x58)
[<c002c27c>] (update_process_times) from [<c006a8e8>] (tick_periodic+0x34/0xbc)
[<c006a8e8>] (tick_periodic) from [<c006a9e4>] (tick_handle_periodic+0x2c/0x94)
[<c006a9e4>] (tick_handle_periodic) from [<c00138d8>] (twd_handler+0x2c/0x40)
[<c00138d8>] (twd_handler) from [<c005cd88>] (handle_percpu_devid_irq+0x68/0x84)
[<c005cd88>] (handle_percpu_devid_irq) from [<c00594e0>] (generic_handle_irq+0x20/0x30)
[<c00594e0>] (generic_handle_irq) from [<c000ecf4>] (handle_IRQ+0x38/0x94)
[<c000ecf4>] (handle_IRQ) from [<c00085b0>] (gic_handle_irq+0x28/0x5c)
[<c00085b0>] (gic_handle_irq) from [<c0011a40>] (__irq_svc+0x40/0x50)
Exception stack(0xee207f18 to 0xee207f60)
7f00:                                                       0000003d 20000093
7f20: c089f494 000004f0 ee1fd400 00000000 00000000 c0305d28 00000000 00000000
7f40: 00000000 00000000 00000001 ee207f60 c0305d58 c0305d58 60000013 ffffffff
[<c0011a40>] (__irq_svc) from [<c0305d58>] (test_thread+0x30/0x38)
[<c0305d58>] (test_thread) from [<c003c49c>] (kthread+0xcc/0xe8)
[<c003c49c>] (kthread) from [<c000e4b8>] (ret_from_fork+0x14/0x3c)
Kernel panic - not syncing: softlockup: hung tasks
CPU: 3 PID: 586 Comm: test_task Not tainted 3.16.0 #41
[<c00142d0>] (unwind_backtrace) from [<c0010f64>] (show_stack+0x10/0x14)
[<c0010f64>] (show_stack) from [<c045cb60>] (dump_stack+0x74/0x90)
[<c045cb60>] (dump_stack) from [<c0459fb8>] (panic+0x90/0x204)
[<c0459fb8>] (panic) from [<c0087e50>] (watchdog_timer_fn+0x1a0/0x1bc)
[<c0087e50>] (watchdog_timer_fn) from [<c003f1d0>] (hrtimer_run_queues+0xcc/0x23c)
[<c003f1d0>] (hrtimer_run_queues) from [<c002c244>] (run_local_timers+0x8/0x14)
[<c002c244>] (run_local_timers) from [<c002c27c>] (update_process_times+0x2c/0x58)
[<c002c27c>] (update_process_times) from [<c006a8e8>] (tick_periodic+0x34/0xbc)
[<c006a8e8>] (tick_periodic) from [<c006a9e4>] (tick_handle_periodic+0x2c/0x94)
[<c006a9e4>] (tick_handle_periodic) from [<c00138d8>] (twd_handler+0x2c/0x40)
[<c00138d8>] (twd_handler) from [<c005cd88>] (handle_percpu_devid_irq+0x68/0x84)
[<c005cd88>] (handle_percpu_devid_irq) from [<c00594e0>] (generic_handle_irq+0x20/0x30)
[<c00594e0>] (generic_handle_irq) from [<c000ecf4>] (handle_IRQ+0x38/0x94)
[<c000ecf4>] (handle_IRQ) from [<c00085b0>] (gic_handle_irq+0x28/0x5c)
[<c00085b0>] (gic_handle_irq) from [<c0011a40>] (__irq_svc+0x40/0x50)
Exception stack(0xee207f18 to 0xee207f60)
7f00:                                                       0000003d 20000093
7f20: c089f494 000004f0 ee1fd400 00000000 00000000 c0305d28 00000000 00000000
7f40: 00000000 00000000 00000001 ee207f60 c0305d58 c0305d58 60000013 ffffffff
[<c0011a40>] (__irq_svc) from [<c0305d58>] (test_thread+0x30/0x38)
[<c0305d58>] (test_thread) from [<c003c49c>] (kthread+0xcc/0xe8)
[<c003c49c>] (kthread) from [<c000e4b8>] (ret_from_fork+0x14/0x3c)
CPU0: stopping
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.16.0 #41
[<c00142d0>] (unwind_backtrace) from [<c0010f64>] (show_stack+0x10/0x14)
[<c0010f64>] (show_stack) from [<c045cb60>] (dump_stack+0x74/0x90)
[<c045cb60>] (dump_stack) from [<c0012e9c>] (handle_IPI+0x134/0x170)
[<c0012e9c>] (handle_IPI) from [<c00085dc>] (gic_handle_irq+0x54/0x5c)
[<c00085dc>] (gic_handle_irq) from [<c0011a40>] (__irq_svc+0x40/0x50)
Exception stack(0xc088ff60 to 0xc088ffa8)
ff60: ffffffed 00000000 ffffffed 00000000 c088e000 00000000 00000000 c0896464
ff80: c0463dc4 00000000 c088cb30 0000004c 00000000 c088ffa8 c000efd4 c000efd8
ffa0: 60000013 ffffffff
[<c0011a40>] (__irq_svc) from [<c000efd8>] (arch_cpu_idle+0x28/0x30)
[<c000efd8>] (arch_cpu_idle) from [<c0052150>] (cpu_startup_entry+0x1ac/0x1f0)
[<c0052150>] (cpu_startup_entry) from [<c05d1b3c>] (start_kernel+0x328/0x38c)
CPU1: stopping
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 3.16.0 #41
[<c00142d0>] (unwind_backtrace) from [<c0010f64>] (show_stack+0x10/0x14)
[<c0010f64>] (show_stack) from [<c045cb60>] (dump_stack+0x74/0x90)
[<c045cb60>] (dump_stack) from [<c0012e9c>] (handle_IPI+0x134/0x170)
[<c0012e9c>] (handle_IPI) from [<c00085dc>] (gic_handle_irq+0x54/0x5c)
[<c00085dc>] (gic_handle_irq) from [<c0011a40>] (__irq_svc+0x40/0x50)
Exception stack(0xee891f90 to 0xee891fd8)
1f80:                                     ffffffed 00000000 ffffffed 00000000
1fa0: ee890000 00000000 00000000 c0896464 c0463dc4 00000000 c088cb30 0000004c
1fc0: 00000000 ee891fd8 c000efd4 c000efd8 60000013 ffffffff
[<c0011a40>] (__irq_svc) from [<c000efd8>] (arch_cpu_idle+0x28/0x30)
[<c000efd8>] (arch_cpu_idle) from [<c0052150>] (cpu_startup_entry+0x1ac/0x1f0)
[<c0052150>] (cpu_startup_entry) from [<60008684>] (0x60008684)
CPU2: stopping
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.16.0 #41
[<c00142d0>] (unwind_backtrace) from [<c0010f64>] (show_stack+0x10/0x14)
[<c0010f64>] (show_stack) from [<c045cb60>] (dump_stack+0x74/0x90)
[<c045cb60>] (dump_stack) from [<c0012e9c>] (handle_IPI+0x134/0x170)
[<c0012e9c>] (handle_IPI) from [<c00085dc>] (gic_handle_irq+0x54/0x5c)
[<c00085dc>] (gic_handle_irq) from [<c0011a40>] (__irq_svc+0x40/0x50)
Exception stack(0xee893f90 to 0xee893fd8)
3f80:                                     ffffffed 00000000 ffffffed 00000000
3fa0: ee892000 00000000 00000000 c0896464 c0463dc4 00000000 c088cb30 0000004c
3fc0: 00000000 ee893fd8 c000efd4 c000efd8 60000013 ffffffff
[<c0011a40>] (__irq_svc) from [<c000efd8>] (arch_cpu_idle+0x28/0x30)
[<c000efd8>] (arch_cpu_idle) from [<c0052150>] (cpu_startup_entry+0x1ac/0x1f0)
[<c0052150>] (cpu_startup_entry) from [<60008684>] (0x60008684)
PANIC: softlockup: hung tasksEntering kdb (current=0xee01c800, pid 586) on processor 3 due to Keyboard Entry
[3]kdb> 

2、单核挂死并屏蔽了本cpu中断的情况。eg local_irq_save, spin_lock_irqsave。对于这种情况由于CPU无法接受到中断信息了。显然中断都无法接收了,上面第一种方法就失效了。但是某些芯片有不可屏蔽中断NMI。

在多核系统里面,每个核都可以去检测其他核的中断接受情况,如果检测到某个核未接受中断了,就可以给该核发生一个不可屏蔽中断的消息,同样在这个中断处理函数里面把调用栈打出来。

该方法有部分也是和方法1公用的

watchdog_enable->watchdog_nmi_enable

static void watchdog_enable(unsigned int cpu)
{struct hrtimer *hrtimer = &__raw_get_cpu_var(watchdog_hrtimer);..................../* Enable the perf event */watchdog_nmi_enable(cpu);
..............................
}

 watchdog_nmi_enable里面注册了一个hard lockup检测事件。其回调函数是watchdog_overflow_callback

我感觉可能arm也是这个样子把。看x86就是每个一段时间发出一个NMI中断。然后在回调函数里面检查中断触发的次数是否增加吧

这个硬件在x86里叫performance monitoring,这个硬件有一个功能就是在cpu clock经过了多少个周期后发出一个NMI中断出来。

static int watchdog_nmi_enable(unsigned int cpu)
{......................wd_attr->sample_period = hw_nmi_get_sample_period(watchdog_thresh);/* Try to register using hardware perf events */event = perf_event_create_kernel_counter(wd_attr, cpu, NULL, watchdog_overflow_callback, NULL);............................
}

 hard lockup判定:watchdog_overflow_callback->is_hardlockup

is_hardlockup:可以看到它先去读取中断被触发的次数。然后再去比较上一次NMI中断触发时保存的中断次数(hrtimer_interrupts_saved)。如果相等说明出现了hard lockup.

另外hrtimer_interrupts这个变量在方法1的喂狗软中断里面就会更新。

static int is_hardlockup(void)
{unsigned long hrint = __this_cpu_read(hrtimer_interrupts);if (__this_cpu_read(hrtimer_interrupts_saved) == hrint)return 1;__this_cpu_write(hrtimer_interrupts_saved, hrint);return 0;
}

下面这种hard lockup怎么构造不出来呢? 反而一直报rcu相关的问题

int test_thread(void* a)
{unsigned long flags;printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, cpu id %d\n", in_interrupt(), in_softirq(), smp_processor_id());local_irq_disable();while (1){}return 0;
}

 [root@arm_test ]# INFO: rcu_sched detected stalls on CPUs/tasks: { 1} (detected by 0, t=8407 jiffies, g=-62, c=-63, q=308)
Task dump for CPU 1:
test_task       R running      0   653      2 0x00000002
[<c045de78>] (__schedule) from [<c003c49c>] (kthread+0xcc/0xe8)
[<c003c49c>] (kthread) from [<c000e4b8>] (ret_from_fork+0x14/0x3c)
INFO: rcu_sched detected stalls on CPUs/tasks: { 1} (detected by 0, t=14712 jiffies, g=-62, c=-63, q=308)
Task dump for CPU 1:
test_task       R running      0   653      2 0x00000002
[<c045de78>] (__schedule) from [<c003c49c>] (kthread+0xcc/0xe8)
[<c003c49c>] (kthread) from [<c000e4b8>] (ret_from_fork+0x14/0x3c)

 通过top和interrupt能看到是哪个进程出问题了。

 softlockup simulate, in_interrupt 0 in_softirq 0, cpu id 1//内核线程在1核上

[root@arm_test ]# cat /proc/interrupts 
           CPU0       CPU1       CPU2       CPU3       
 29:       9131       1444       9128       9112       GIC  29  twd
 

root@arm_test ]# cat /proc/interrupts 
           CPU0       CPU1       CPU2       CPU3       
 29:       9357       1444       9350       9332       GIC  29  twd
 34:          6          0          0          0       GIC  34  timer
可以看到cpu1的twd中断不增加

top可以看到test_task一直占用cpu1

Mem: 19528K used, 1013232K free, 0K shrd, 252K buff, 8944K cached
CPU:  0.3% usr  1.5% sys  0.0% nic 96.4% idle  0.0% io  0.0% irq  1.5% sirq
Load average: 1.65 0.55 0.19 2/54 787
  PID  PPID USER     STAT   VSZ %VSZ CPU %CPU COMMAND
  653     2 0        RW       0  0.0   1  3.2 [test_task]
  787   781 0        R     2432  0.2   0  0.2 top
    7     2 0        SW       0  0.0   2  0.0 [rcu_sched]
 

后面知道为啥构造不出来了

hard lockup:需要CPU支持NMI(不可屏蔽中断,通常是通过CPU里的PMU单元实现的),如果PMU发现长时间(这个cycle是借助NMI来计算的,因为定时器可能不工作了)一个中断都不来,就知道发生了hard lockup,这时(触发NMI中断,中断处理函数中)分析栈就知道在哪里锁住中断的。需要把CONFIG_HARDLOCKUP_DETECTOR打开。

由于ARM里面没有NMI,因此内核不支持ARM的hard lockup detector。但有一些内核patch可以用,比如用FIQ模拟MNI(如果FIQ用于其他地方了,这里就用不了了),或者用CPU1去检测CPU0是否被hard lockup(但CPU1没办法获得线程的栈,只能知道lockup了),但这两个patch都没在主线上。FIQ在Linux中基本不用的(一般只做特殊的debugger,常规代码不用)。
————————————————
版权声明:本文为CSDN博主「落尘纷扰」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/jasonchen_gbd/article/details/79465405

如果没有这种不可屏蔽中断的芯片(例如arm),这种怎么处理呢??要不明天试试自己构造一个检测的

还是利用is_hardlockup里面的两个每cpu变量。起一个高精度定时器。每隔一段时间检查一下这两个值是不是相等。如果是相等的说明该cpu关中断了。唯一需要注意的是:假设cpu0关中断了,它自己是不能发现的,只有其他cpu帮忙检查才行。

主要代码如下watch_dog.c:

主要使用者三个变量

/*****************************************/
static DEFINE_PER_CPU(struct hrtimer, hardlock_check_hrtimer);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts_saved);
/*****************************************/

 watchdog_enable里面再起一个定时器,检查是否有hardlockup

static void watchdog_enable(unsigned int cpu)
{
............................................................./* 添加hardlock定时器,用于检查hardlock的情况 */hrtimer = &__raw_get_cpu_var(hardlock_check_hrtimer);/* kick off the timer for the hardlockup detector */hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);hrtimer->function = hardlock_check_callback;__this_cpu_write(hrtimer_interrupts_saved, 0);__this_cpu_write(hrtimer_interrupts, 0);/* done here because hrtimer_start can only pin to smp_processor_id() */hrtimer_start(hrtimer, ns_to_ktime(sample_period * 2),HRTIMER_MODE_REL_PINNED);
}

 定时器回调函数

static void hardlock_check_callback(struct hrtimer *hrtimer)
{/* check for a hardlockup* This is done by making sure our timer interrupt* is incrementing.  The timer interrupt should have* fired multiple times before we overflow'd.  If it hasn't* then this is a good indication the cpu is stuck*/if (is_hardlockup()) {int this_cpu = smp_processor_id();WARN(1, "CPU %d happen hard LOCKUP detect by cpu %d",  (this_cpu + 1) % 4, this_cpu);//return;}/* 增加高精度定时器的超时时间,并重启定时器 *//* .. and repeat */hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period * 2));return;
}

 watchdog_timer_fn->watchdog_interrupt_count:这个里面会更新这个值的,所以我们不用管自己用即可hrtimer_interrupts

cpu0->cpu1->cpu2->cpu3。cpu3反过来监控cpu0的计数

static int is_hardlockup(void)
{/* 每次进来先更新当前cpu的中断计数 */unsigned long cur_hrint = __this_cpu_read(hrtimer_interrupts);__this_cpu_write(hrtimer_interrupts_saved, cur_hrint);/* 读取需要监控的cpu的计数,判断是否出现hardlock */int cpu = smp_processor_id();int check_cpu = (cpu + 1) % 4;unsigned long hrint = per_cpu(hrtimer_interrupts, check_cpu);unsigned long saved_hrint = per_cpu(hrtimer_interrupts_saved, check_cpu);if (saved_hrint == hrint){return 1;}/*更新监控的cpu计数当我监控完之后,该cpu出现了一直关中断的情况,如果不更新,那么interrupts和saved是一直不相等的	 */per_cpu(hrtimer_interrupts_saved, check_cpu) = hrint;return 0;
}

测试代码

int test_thread(void* a)
{unsigned long flags;printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, cpu id %d\n", in_interrupt(), in_softirq(), smp_processor_id());local_irq_disable();while (1){}//f1(10, 20);return 0;
}

运行在cpu1上,cpu0负责监控cpu1(实测有误报的情况) 

3、对于所有核都挂死的情况。可以借用狗叫重启设备。异常现场信息记录,可以在挂死前把所有的寄存器记录下来。

这篇关于关于单核/多核死机问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/197174

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g