P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷

2023-10-12 15:40

本文主要是介绍P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷

洛谷题目传送门

文章目录

  • P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷
    • 题目描述
    • 输入格式
    • 输出格式
    • 样例 #1
      • 样例输入 #1
      • 样例输出 #1
    • 提示
    • 题目大意
    • 方法一(线段树维护dp)
      • code
    • 方法二 (单调队列维护dp)
      • code

题目描述

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie’s legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down.

To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target.

Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

FJ给奶牛贝西的脚安装上了弹簧,使它可以在农场里快速地跳跃,但是它还没有学会如何降低速度。

FJ觉得让贝西在一条直线的一维线路上进行练习,他在不同的目标点放置了N (1 <= N <= 1000)个目标点,目标点i在目标点x(i),该点得分为p(i)。贝西开始时可以选择站在一个目标点上,只允许朝一个方向跳跃,从一目标点跳到另外一个目标点,每次跳跃的距离至少和上一次跳跃的距离相等,并且必须跳到一个目标点。

每跳到一个目标点,贝西可以拿到该点的得分,请计算他的最大可能得分。

输入格式

* Line 1: The integer N.

* Lines 2…1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0…1,000,000.

输出格式

* Line 1: The maximum number of points Bessie can receive.

样例 #1

样例输入 #1

6 
5 6 
1 1 
10 5 
7 6 
4 8 
8 10

样例输出 #1

25

提示

There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

题目大意

草场上有一条直线,直线上有若干个目标点。每个目标点都有一个分值和一个坐标。现在你可以选择其中任意一个目标点开始跳,只能沿一个方向跳,并且必须跳到另一个目标点。且每次跳的距离都不能少于上一次的距离。请问你能得到的最大分值是多少?、

方法一(线段树维护dp)

考试时就是想到了这个做法,但是改了时限100ms过不了

f i , j f_{i , j} fi,j 表示只通过 j j j 步到达点 i i i 的最大分值。

j j j 会炸空间?

j j j 其实最多只有 n 2 n^2 n2 种可能,乱搞一下就好了

那么:
f i , j = M a x k = 1 i − 1 ( M a x l = 0 j f k , l + p i ) f_{i , j} = Max_{k = 1}^{i - 1}(Max_{l = 0}^jf_{k , l} + p_i) fi,j=Maxk=1i1(Maxl=0jfk,l+pi)
用线段树维护一下 f k , l f_{k , l} fk,l 就好了

code

#include <bits/stdc++.h>
#define fu(x, y, z) for (int x = y; x <= z; x++)
#define fd(x, y, z) for (int x = y; x >= z; x--)
#define LL long long
using namespace std;
const int N = 1005, M = 1000005;
struct node {int x, p;
} t[N];
LL ans;
int n, cnt, flg[M], p[M], p1[M], K = 1000005, len, dis[N][N];
struct Tr {LL val;int lp, rp;
} tr[M * 8];
bool cmp(node x, node y) { return x.x < y.x; }
void glp(int x) { tr[x].lp = ++len; }
void grp(int x) { tr[x].rp = ++len; }
void updata(int x) { tr[x].val = max(tr[tr[x].lp].val, tr[tr[x].rp].val); }
void change(int x, int l, int r, int pos, LL v) {if (l == r)tr[x].val = max(tr[x].val, v);else {int mid = l + r >> 1;if (pos <= mid) {if (!tr[x].lp)glp(x);change(tr[x].lp, l, mid, pos, v);} else {if (!tr[x].rp)grp(x);change(tr[x].rp, mid + 1, r, pos, v);}updata(x);}
}
int query(int x, int l, int r, int pos) {if (r <= pos)return tr[x].val;else {int mid = l + r >> 1, max1 = 0, max2 = 0;if (tr[x].lp)max1 = query(tr[x].lp, l, mid, pos);if (mid < pos && tr[x].rp)max2 = query(tr[x].rp, mid + 1, r, pos);return max(max1, max2);}
}
void clear(int x) {if (tr[x].lp)clear(tr[x].lp);if (tr[x].rp)clear(tr[x].rp);tr[x].val = tr[x].lp = tr[x].rp = 0;
}
void fans() { fu(i, 1, n) ans = max(ans, tr[i].val); }
int main() {scanf("%d", &n);fu(i, 1, n) scanf("%d%d", &t[i].x, &t[i].p);sort(t + 1, t + n + 1, cmp);fu(i, 1, n) fu(j, 1, n) dis[i][j] = abs(t[i].x - t[j].x);fu(i, 1, n) fu(j, 1, n) {if (!flg[dis[i][j]]) {flg[dis[i][j]] = 1;p[++cnt] = dis[i][j];K = max(K, dis[i][j]);}}sort(p + 1, p + cnt + 1);fu(i, 1, cnt) p1[p[i]] = i;len = n;fu(i, 1, n) {ans = max(ans, 1ll * t[i].p);change(i, 0, K, p1[0], 1ll * t[i].p);}int k, k2;fu(i, 1, n) {fu(j, 1, i - 1) {k = query(j, 0, K, p1[dis[i][j]]);k2 = query(i, 0, K, p1[dis[i][j]]);if (k + t[i].p > k2)change(i, 0, K, p1[dis[i][j]], k + t[i].p);}}fans();fu(i, 1, n) clear(i);len = n;fu(i, 1, n) change(i, 0, K, p1[0], t[i].p);fd(i, n, 1) {fd(j, n, i + 1) {k = query(j, 0, K, p1[dis[i][j]]);k2 = query(i, 0, K, p1[dis[i][j]]);if (k + t[i].p > k2)change(i, 0, K, p1[dis[i][j]], k + t[i].p);}}fans();printf("%lld", ans);
}

然后因为查找函数没有加等号 , 就寄掉8分。

差点就AK了

方法二 (单调队列维护dp)

f i , j f_{i , j} fi,j 表示从 j j j i i i 的最大分值 , 用单调队列维护

好像宏定义会慢一点?

code

 #include <bits/stdc++.h>
#define LL long long
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)
using namespace std;
const int N = 2005;
struct node {int x , p;
} t[N];
int n , k;
LL ans , f[N][N];
inline bool cmp (node x , node y) { return x.x < y.x; }
inline bool cmp1 (node x , node y) { return x . x > y.x; }
inline void fans (int flg) {memset (f , -0x3f , sizeof (f));if (flg == 1) sort (t + 1 , t + n + 1 , cmp);else sort (t + 1 , t + n + 1 , cmp1);for (int j = 1 ; j <= n ; j ++) {f[j][j] = t[j].p;for (int i = j + 1 , k = j + 1 ; i <= n ; i ++) {f[i][j] = f[i - 1][j] - t[i - 1].p;while (k > 1 && (t[j].x - t[k - 1].x) * flg <= (t[i].x - t[j].x )* flg)f[i][j] = max (f[i][j] , f[j][--k]);f[i][j] += t[i].p;ans = max (ans , f[i][j]);}ans = max (ans , f[j][j]);}
}
int main () {scanf ("%d" , &n);fu (i , 1 , n) scanf ("%d%d" , &t[i].x , &t[i].p);sort (t + 1 , t + n + 1 , cmp);fans (1);fans (-1);printf ("%lld" , ans);return 0;
}

这篇关于P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/196831

相关文章

【POJ】3660 Cow Contest floyd(可以拓扑排序?)

Cow Contest Time Limit: 1000MS Memory Limit: 65536KTotal Submissions: 6925 Accepted: 3792 Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating i

BFS —— POJ 3278 Catch That Cow

对应POJ题目:点击打开链接 Catch That Cow Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 54686 Accepted: 17096 Description Farmer John has been informed of the location of a fugitive cow

USACO Section 2.3 Cow Pedigrees

题意: N个节点  深度为K  的正则二叉树  求  树有几种形态 思路: 一开始以为是数学题…  看了byvoid的题解才知道是dp… 每棵树由根节点、左子树、右子树构成  由此得状态转移  树=左子树*右子树 节点数和深度是影响答案的属性  所以令dp[i][j]表示i个节点深度在j以内的树的形态数 深度在j以内的树又两个深度在j-1以内的树和一个根节点构成 设左子树k个节

Codeforces 283. B. Cow Program记忆化搜索

output standard output Farmer John has just given the cows a program to play with! The program contains two integer variables, x and y, and performs the following operations on a sequence a1, a2, ..

OpenGL/GLUT实践:弹簧-质量-阻尼系统模拟摆动的绳子和布料的物理行为(电子科技大学信软图形与动画Ⅱ实验)

源码见GitHub:A-UESTCer-s-Code 文章目录 1 实现效果2 实现过程2.1 一维弹性物体模拟2.1.1 质点类(Mass)2.1.2 弹簧类(Spring)2.1.3 模拟类(RopeSimulation)2.1.4 openGL实现 2.2 二维弹性物体模拟2.2.1 模拟类改进(1) Simulation1 类(2) ClothSimulation 类 2.2.2 o

【POJ3270】【Cow Sorting】

Cow Sorting Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 6411 Accepted: 2488 Description Farmer John's N (1 ≤ N ≤ 10,000) cows are lined up to be milked in the evening. Each

【POJ3268】【Silver Cow Party】【反向dij】【sizeof失效】

Silver Cow Party Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 15522 Accepted: 7039 Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going

POJ 1985 Cow Marathon(树的直径)

题目链接 题意:给出一棵树,求出这个树的直径 解答:任选一点进行dfs,会找到一个最远点s,在以这个最远点s进行dfs,会找到一个最远点是t,那么s-t就是树的直径。 //#include<bits/stdc++.h>#include<cstdio>#include<algorithm>#include<vector>#include<cstring>using namespace

POJ 2184 Cow Exhibition (处理负值的01背包)

【题目链接】:click here~~ 【题意】: 题意:给定n头牛的聪明指数S和幸福指数F,如果存在S的和TS>=0与F的和TF>=0同时成立时, 输出TS与TF的和的最大值sum,否则,输出0。 【思路】:      转化问题,求s和为某个固定值时候最大的f和值,然后遍历这些所有的s和以及对应的f和值,求出总和总和最大的那个。      那么这样就是一个0-1背包问题,可以把s值理解

poj3278--Catch That Cow

Catch That Cow Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 43680 Accepted: 13615 Description Farmer John has been informed of the location of a fugitive cow and wants to catch h