DL4J之CNN对今日头条文本分类

2023-10-12 14:50

本文主要是介绍DL4J之CNN对今日头条文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、数据集介绍

    数据来源:今日头条客户端

    数据格式如下:

6551700932705387022_!_101_!_news_culture_!_京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国
6552368441838272771_!_101_!_news_culture_!_发酵床的垫料种类有哪些?哪种更好?_!_
6552407965343678723_!_101_!_news_culture_!_上联:黄山黄河黄皮肤黄土高原。怎么对下联?_!_
6552332417753940238_!_101_!_news_culture_!_林徽因什么理由拒绝了徐志摩而选择梁思成为终身伴侣?_!_
6552475601595269390_!_101_!_news_culture_!_黄杨木是什么树?_!_

    每行为一条数据,以_!_分割的个字段,从前往后分别是 新闻ID,分类code(见下文),分类名称(见下文),新闻字符串(仅含标题),新闻关键词

    分类code与名称:

100 民生 故事 news_story
101 文化 文化 news_culture
102 娱乐 娱乐 news_entertainment
103 体育 体育 news_sports
104 财经 财经 news_finance
106 房产 房产 news_house
107 汽车 汽车 news_car
108 教育 教育 news_edu 
109 科技 科技 news_tech
110 军事 军事 news_military
112 旅游 旅游 news_travel
113 国际 国际 news_world
114 证券 股票 stock
115 农业 三农 news_agriculture
116 电竞 游戏 news_game

    github地址:https://github.com/fate233/toutiao-text-classfication-dataset

    数据资源中给出了分类的实验结果:

Test Loss:   0.57, Test Acc:  83.81%precision    recall  f1-score   supportnews_story       0.66      0.75      0.70       848news_culture       0.57      0.83      0.68      1531news_entertainment       0.86      0.86      0.86      8078news_sports       0.94      0.91      0.92      7338news_finance       0.59      0.67      0.63      1594news_house       0.84      0.89      0.87      1478news_car       0.92      0.90      0.91      6481news_edu       0.71      0.86      0.77      1425news_tech       0.85      0.84      0.85      6944news_military       0.90      0.78      0.84      6174news_travel       0.58      0.76      0.66      1287news_world       0.72      0.69      0.70      3823stock       0.00      0.00      0.00        53news_agriculture       0.80      0.88      0.84      1701news_game       0.92      0.87      0.89      6244avg / total       0.85      0.84      0.84     54999

   下面我们就来用deeplearning4j来实现一个卷积结构对该数据集进行分类,看能不能得到更好的结果。

二、卷积网络可以用于文本处理的原因

    CNN非常适合处理图像数据,前面一篇文章《deeplearning4j——卷积神经网络对验证码进行识别》介绍了CNN对验证码进行识别。本篇博客将利用CNN对文本进行分类,在开始之前我们先来直观的说说卷积运算在做的本质事情是什么。卷积运算,本质上可以看做两个向量的点积,两个向量越同向,点积就越大,经过relu和MaxPooling之后,本质上是提取了与卷积核最同向的结构,这个“结构”实际上是图片上的一些线条。

    那么文本可以用CNN来处理吗?答案是肯定的,文本每个词用向量表示之后,依次排开,就变成了一张二维图,如下图,沿着红色箭头的方向(也就是文本的方向)看,两个句子用一幅图表示之后,会出现相同的单元,也就可以用CNN来处理。

    c943ed94cdf1c2572c9a16245ff8b781d60.jpg

三、文本处理的卷积结构

    那么,怎么设计这个CNN网络结构呢?如下图:(论文地址:https://arxiv.org/abs/1408.5882)

    ae36a6f2eaa6a116716da820c6775eacf4a.jpg

   注意点:

   1、卷积核移动的方向必须为句子的方向

   2、每个卷积核提取的特征为N行1列的向量

   3、MaxPooling的操作的对象是每一个Feature Map,也就是从每一个N行1列的向量中选择一个最大值

   4、把选择的所有最大值接起来,经过几个Fully Connected 层,进行分类

四、数据的预处理与词向量

    1、分词工具:HanLP

    2、处理后的数据格式如下:(类别code_!_词,其中,词与词之间用空格隔开,_!_为分割符)

   0522983c61e065f76ea680d7c88627d295d.jpg

    数据预处理代码如下:

public static void main(String[] args) throws Exception {BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(new FileInputStream(new File("/toutiao_cat_data/toutiao_cat_data.txt")), "UTF-8"));OutputStreamWriter writerStream = new OutputStreamWriter(new FileOutputStream("/toutiao_cat_data/toutiao_data_type_word.txt"), "UTF-8");BufferedWriter writer = new BufferedWriter(writerStream);String line = null;long startTime = System.currentTimeMillis();while ((line = bufferedReader.readLine()) != null) {String[] array = line.split("_!_");StringBuilder stringBuilder = new StringBuilder();for (Term term : HanLP.segment(array[3])) {if (stringBuilder.length() > 0) {stringBuilder.append(" ");}stringBuilder.append(term.word.trim());}writer.write(Integer.parseInt(array[1].trim()) + "_!

这篇关于DL4J之CNN对今日头条文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/196550

相关文章

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。