【计算机组成原理实验】ALU设计

2023-10-12 12:40

本文主要是介绍【计算机组成原理实验】ALU设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验内容

设计并实现一个 ALU。

实验环境

ASUS VivoBook + Windows10 + Vivado2019.2,语言为 Verilog HDL。

实验要求

1. 支持至少 8 种运算

2. 输出 5 个标志符号

3. 支持左右移位操作

4. 可支持至少两种舍入操作

实验过程

1. 顶层设计

  • 输入

  • 输出

2. 运算操作

3. 移位操作

4. 舍入操作

5. 设计代码

`timescale 1ns / 1ps
///
// Company: Beijing Institute of Technology
// Engineer: Yabin Shi
// Create Date: 2022/12/24 17:39:50
///
module mine(
reset, in0, in1, op, cut, out, overflow, zero, carryout, parity, signal
);
input reset; 
//用于初始化置零
input[31:0] in0,in1; 
//操作数
input[10:0] op; 
//操作运算符
input cut;
output[31:0] out; 
//运算结果
output overflow,zero,carryout,parity,signal; //溢出判断位、零值判断位、进借
位判断位、奇偶校验位、符号位
reg[31:0] out; 
//标明为寄存器类型变量
reg overflow,zero,carryout,parity,signal;//标明为寄存器类型变量
always@(*) 
//使用 always 语句进行运算
begin
if(reset) 
//判断 reset 值,为 1 进行初始化,为 0 进行 ALU 运算begin
out=0;
overflow=0;
zero=0;
carryout=0;
parity=0;
signal=0;
end
else
alutask( in0, in1, op, cut, out, overflow, zero, carryout, parity, signal);
//把具体运算功能模块封装成一个任务
end
task alutask; 
//运算任务定义
input[31:0] in0,in1;
input[10:0] op;
input cut;
output[31:0] out;
output overflow,zero,carryout,parity,signal;
reg[31:0] out;
reg tmp,pmt,overflow,zero,carryout,parity,signal;
begin
overflow=0; 
//每次进行运算前,标志位置 0
carryout=0;
zero=0;
parity=0;
signal=0;
case( op )
11'b00000100000://有符号数加法
begin
{tmp,out}=in0+in1;
end
11'b00000100001://有符号数减法
begin
{tmp,out}=in0-in1;
end
11'b00000100010: out=in0&in1;//按位与
11'b00000100011: out=in0|in1;//按位或
11'b00000100100: out=in0^in1;//异或
11'b00000100101: out=~(in0|in1);//或非
11'b00000100110: out=( $signed(in0)==$signed(in1) )? 1:0;//有符号数
相等运算
11'b00000100111: out=( $signed(in0)>$signed(in1) )? 1:0;//有符号数比
较运算11'b00000000000: out=in0<<in1;
11'b00000000010:
begin
out=in0>>in1;
case( cut )
1'b0://恒舍
out[0]=out[0];
1'b1://恒置 1
out[0]=1;
endcase
end
11'b00000000011: out=in0>>>in1;
endcase
zero=out==0; 
//zero 通过直接判断 out 是否为 0
carryout=tmp;
overflow=in0[31]^in1[31]^out[31]^tmp;
signal=out[31];
parity=~^out;
end
endtask
endmodule

6. 仿真文件

`timescale 1ns / 1ps
///
// Company: Beijing Institute of Technology
// Engineer: Yabin Shi
// Create Date: 2022/12/24 17:39:50
///
module mine1;
reg reset;
reg [31:0] in0,in1;
reg [10:0] op;
reg cut;
wire [31:0] out;
wire overflow,zero,carryout,parity,signal;
mine unit( 
//模块实例化
.reset(reset),
.in0(in0),
.in1(in1),
.op(op),.cut(cut),
.out(out),
.overflow(overflow),
.zero(zero),
.carryout(carryout),
.parity(parity),
.signal(signal)
);
initial
begin
#10 reset=1;
#10 reset=0;in0=32'd3;in1=32'd2;cut=1'b1;
for(op=11'b00000100000;op<11'b00000100111;op=op+1)
#20;
#20 op=11'b00000000000;
#20 op=11'b00000000010;
#20 op=11'b00000000011;
#10 reset=1;
#10 reset=0;in0=-32'd1;in1=32'd2;cut=1'b0;
for(op=11'b00000100000;op<11'b00000100111;op=op+1)
#20;
#20 op=11'b00000000000;
#20 op=11'b00000000010;
#20 op=11'b00000000011;
#100 $finish;
end
initial
$monitor ($time,,,"reset=%b in0=%b in1=%b op=%b cut=%b out=%b overflow=%b
zero=%b carryout=%b parity=%b signal=%b",
reset,in0,in1,op,cut,out,overflow,zero,carryout,parity,signal);
endmodule

7. 电路图

8. 仿真波形图

9. Monitor 监视器结果

10. 实验心得

在本次实验过程中,我将书本中学到的计算机组成原理和体系结构内容进行了实践,基

本掌握了 Vivado 的使用及设计代码、仿真代码的书写,实现了知识的沉淀、巩固,本次实

验让我收获颇丰。

实验期间,我遇到了许多难题,花费了大量时间在学习软件使用及编程规范上,所幸最

终我成功完成了实验。其中,安徽大学刘峰老师在 Bilibili 平台发布的“Verilog 的仿真代码和

约束文件的编写”视频对我帮助尤大,这也是网络上为数不多的专门介绍仿真代码编写的课

程,在此特加推荐与感谢。

项目源码及实验报告:https://github.com/YourHealer/Principles-of-computer-composition-ALU.git

这篇关于【计算机组成原理实验】ALU设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/195885

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry